一致性哈希算法原理以及实现方案

简介: 一致性哈希算法原理以及实现方案

分布式存储方案

我们都知道,当数据量大了的时候,我们都会选择使用多台服务器共存数据,通过 取模方式进行随机分配服务器存储.

例如:  将用户的1亿订单数据分配到3台服务器上,进行分表存储.

我们可以通过订单id,或者用户id,进行取模存储:

$server = \[
    '0',
    '1',
    '2'
\];
$userId = mt_rand(1,999999);
$mod = $userId%count($server);
echo "用户{$userId}将存储在 服务器{$server\[$mod-1\]} 中";

这样的话,理论上用户id如果是正常自增,那每台服务器存储的数据都将是平均存储.

哈希算法

在上面我们讲到了可以通过 用户id去进行取模分配服务器

但是实际业务中,没有这么多id取模分配的,数据也可能是不连续,不规律的字符串,这个时候,就需要通过一个好的哈希算法,进行平均分配服务器了.

可以查看文章:http://www.php20.cn/article/sw/hash/253

通过hash算法,将数据尽可能的平均分配到每一台服务器上,

分布式一致性哈希

在上面的存储方案中,我们可以实现对服务器数量进行取模随机分配,保证存储的键尽可能的平均分配到服务器中.

但是,当我们需要扩容服务器,或者进行服务器减配时,就会发现所有的键都需要重新取模分配,那么有什么方法可以尽可能的降低影响吗?

首先,我们需要保证:当取模时,不能使用服务器数量进行取模,否则当服务器数量变动时,所有数据都会变动

这个时候,我们就可以使用分布式一致性哈希算法了.

哈希环

我们首先定义一个0~2^32的数组,同时将数组抽象成一个圆形,0和2^32首尾相连

image.png

将服务器节点,通过取模的方式定位到哈希环中:

image.png

当需要存储数据时,通过 hash(key)%2^32,定位一个点.同时顺时针开始查找服务器节点,找到的第一个为需要存储数据的节点.

例如: hash(key)%2^32=100,那么哈希环从100位置开始顺时针查找服务器节点,找到第一个节点为服务器0,则该数据存储到服务器0中.

增加服务器节点

当需要增加服务器节点时.首先先服务器通过取模,定位到哈希环的点中.

image.png

当定位成功后,意味着 服务器1 的数据需要额外分配,而服务器0,服务器2的数据完全没有变化.

我们只需要将服务器1的数据进行重新分配,将一部分映射的数据重新分配到服务器3即可

删除服务器节点


image.png

当服务器2 节点被删除(失效)时, 将会丢失 服务器1->服务器2 之间的映射数据,

这个时候,就需要将服务器2节点的数据迁移到下一台服务器,也就是服务器0中,同时,服务器1,服务器3的数据不受影响.

虚拟节点概念


当服务器2删除之后,剩下的 服务器0,服务器3,服务器2 都映射到了相近位置,这个时候,服务器0的存储数据就变成了 从服务器1->服务0中间所有的映射数据,会导致服务器0压力激增,这个时候就可以使用虚拟节点的概念进行分配.

image.png

之前的服务器节点分配,使用的是 hash(ip) %2^32,当服务器数量较少,并且 hash ip 映射值相近时,就会出现服务器节点存储数据分配不均的结果.

这个时候,我们可以采用另一种 hash方案,比如 使用 hash(ip+编号) %2^32,并且一台服务器可以使用多个编号进行分配.例如:

hash (ip+1) %2^32. hash(ip+2)%2^32,一台服务器,映射多个节点:

image.png

为了使得服务器节点尽可能平均的存储数据,一个服务器,可以使用更多的虚拟节点,比如10个,100个,将哈希环的服务器节点尽可能的平均分布

redis cluster

redis cluster的一致性哈希算法与本文所说的类似,不同的是redis的哈希环是哈希槽,将key通过hash算法分配到槽位中,同时集群各自管理了多个槽位.

目录
相关文章
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
56 3
|
2月前
|
机器学习/深度学习 算法 机器人
多代理强化学习综述:原理、算法与挑战
多代理强化学习是强化学习的一个子领域,专注于研究在共享环境中共存的多个学习代理的行为。每个代理都受其个体奖励驱动,采取行动以推进自身利益;在某些环境中,这些利益可能与其他代理的利益相冲突,从而产生复杂的群体动态。
272 5
|
1天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
1月前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
22天前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
46 3
|
27天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
1月前
|
负载均衡 算法 应用服务中间件
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
|
1月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
49 4
|
1月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
82 3
|
27天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用