random库:Python随机数的生成与应用

简介: random库:Python随机数的生成与应用

前言


在实际的开发中,经常会用到随机数生成。而random库专用于随机数的生成,它是基于Mersenne Twister算法提供了一个快速伪随机数生成器。


本篇,将详细讲解各种场景之下随机数的生成应用。


生成随机数


对于随机数的生成,random库提供了很多函数,有的负责生成浮点数,有的负责生成整型,还有的可以生成区间内的随机数等。

函数名

参数

意义
random 无参数 随机生成[0-1]之间浮点数
uniform 2个整型参数:最小数,最大数 随机生成最小最大之间的浮点数
randint 2个整型参数:最小数,最大数

随机生成最小最大之间的整数

randrange

3个整型参数:最小数,最大数,步长 随机生成最小最大之间的间隔步长整数

下面,我们来看看这些常用的随机数生成函数的应用:


import random
# 随机生成[0-1]之间浮点数
print("%04.2f" % random.random())
# 随机生成浮点数
print("%04.2f" % random.uniform(100, 200))
# 随机生成整型
print(random.randint(1, 200))
# 随机生成整型
print(random.randrange(0, 200, 5))


运行之后,效果如下:


以上是最常用的,也是最普遍的随机数用法。


种子


不知道读者发现没有,通过上面这些方法虽然能生成随机数,但是随机数都是无序的。这次你运行可能开头是一个数,结尾是一个数,下次运行开头和结尾又会不一样。这对于需要固定序列的随机数需求而言,显然不合适。


所以,random库给我们提供了种子函数:random.seed()。种子会控制由公式生成的第一个值,由于公式是确定的,所以每次只要种子相同,随机数每次生成的序列值就相同。


import random
random.seed(1)
# 随机生成浮点数
print("%04.2f" % random.random())
# 随机生成浮点数
print("%04.2f" % random.uniform(100, 200))
# 随机生成整型
print(random.randint(1, 200))
# 随机生成整型
print(random.randrange(0, 200, 5))


多次运行上面这段代码,你会发现每次随机数都是一样的。


random.sample


博主经常编写刷评论的脚本,但是对于爬虫来说,有一个与众不同的随机数需求。比如,我要评论20个网页,那么将20个网页放在数组中,就会有(0,19)索引进行选择。如果用平常的区间随机数,那么可能会漏掉一些值,意味着也会漏掉一些网页没有评论。


这个时候,博主肯定期望生成一个(0,19)区间的随机数样本,且不重复。保证一个轮回评论完成之后,没有一个网页漏掉。那么这种需求用random库如何操作呢?


当然,小标题已经给出答案了,可以使用random.sample()函数:

import random
print(random.sample(range(0, 20), 20))


运行之后,效果如下:


random.sample第1个参数是一个区间数组,比如随机数在(0,19),那么第1个参数就是range(0,19);第2个是生成多少不重复的随机数,这里需要全部网页都能评论到,所以生成20个随机数。可以看到上面所有随机数都不重复,且都在区间而且唯一。(该函数还可以用于扑克牌的发放,感兴趣的读者,可以自己写写代码熟练掌握)


随机元素


在概率统计中,我们经常使用随机数进行预测概率,比如一枚硬币正面朝上的概率是多少等等。这种求概率的随机元素操作,如果通过随机数实现呢?


答案是random.choice()函数,它可以从一个序列中随机选择元素。比如这里我们来抛硬币10000次,看看各面朝上的概率是多少。具体代码如下:

import random
coin_pro = {
    'heads': 0,
    'tails': 0,
}
coin = ['heads', 'tails']
for i in range(10000):
    coin_pro[random.choice(coin)] += 1
print("正面朝上次数:", coin_pro['heads'])
print("反面朝上次数:", coin_pro['tails'])


运行之后,我们会得到次数,从而也可以计算概率。


SystemRandom


random库下还有一个SystemRandom类,该类产生的系列是不可再生的,因为其随机性跟随系统,而不是来自软件自身。


我们先来看一段代码:

import random
import time
r1 = random.SystemRandom()
print(r1.random())
seed = time.time()
r1 = random.SystemRandom(seed)
print(r1.random())


运行之后,效果如下:


你可以简单的把SystemRandom理解为该随机数的生成因子是系统时间,根据系统时间因子生成的随机数。(只是做一个类比),也就是上面seed因子根本不起作用,它只用系统的随机种子。


非均匀分布


使用numpy库的读者,应该会经常用到该库生成一些正态分布的值。同样的,random随机数库也提供了这些分布的函数用于进行科学计算的应用。下面,我们来分别讲解这些随机数如何生成。

函数

意义

betavariate()

根据Beta分布返回一个介于0和1之间的随机浮点数(用于统计信息)

expovariate()

根据指数分布(用于统计信息),返回一个介于0和1之间或如果介于0和-1之间的随机浮点数(如果参数为负)

gammavariate()

根据Gamma分布返回一个介于0和1之间的随机浮点数(用于统计信息)

gauss()

根据高斯分布(在概率论中使用)返回介于0和1之间的随机浮点数

lognormvariate()

根据对数正态分布(用于概率论),返回介于0和1之间的随机浮点数

normalvariate()

根据正态分布(在概率论中使用)返回介于0和1之间的随机浮点数

vonmisesvariate()

根据von Mises分布返回0到1之间的一个随机浮点数(用于定向统计)

paretovariate()

根据帕累托分布(在概率论中使用)返回介于0和1之间的随机浮点数

weibullvariate()

根据Weibull分布返回0到1之间的随机浮点数(用于统计信息)


正态分布

random库中提供了函数normalvariate()和gauss()生成正态分布随机数(高斯分布)。当然还有一个函数lognormvariate()也可以生成正态分布,不过它生成的正态分布适用于多个不交互随机变量的积。

import random
for i in range(2):
    print(random.normalvariate(0, 1))
for i in range(2):
    print(random.gauss(0, 1))


运行之后,效果如下:


以上都有2个参数:平均值与协方差。平均值是N维空间中的一个坐标,表示样本最有可能产生的位置。这类似于一维或单变量正态分布的钟形曲线的峰值。协方差表示两个变量一起变化的水平。


近似分布

三角分布(triangular distribution),亦称辛普森分布或三角形分布。在概率论与统计学中,三角形分布是低限为a、众数为c、上限为b的连续概率分布。


triangular()方法返回两个指定数字(包括两者)之间的随机浮点数,但是您也可以指定第三个参数,即mode 参数。mode参数使您有机会权衡可能的结果,使其更接近其他两个参数值之一。mode参数默认为其他两个参数值之间的中点,它将不会权衡任何方向的可能结果。

import random
print(random.triangular(20, 60, 30))


运行之后,效果如下:


其他函数感兴趣的可以自行研究。

相关文章
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
28天前
|
XML JSON 数据库
Python的标准库
Python的标准库
169 77
|
12天前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
65 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
29天前
|
XML JSON 数据库
Python的标准库
Python的标准库
50 11
|
29天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
68 8
|
1月前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
37 4
|
1月前
|
缓存 开发者 Python
深入探索Python中的装饰器:原理、应用与最佳实践####
本文作为技术性深度解析文章,旨在揭开Python装饰器背后的神秘面纱,通过剖析其工作原理、多样化的应用场景及实践中的最佳策略,为中高级Python开发者提供一份详尽的指南。不同于常规摘要的概括性介绍,本文摘要将直接以一段精炼的代码示例开篇,随后简要阐述文章的核心价值与读者预期收获,引领读者快速进入装饰器的世界。 ```python # 示例:一个简单的日志记录装饰器 def log_decorator(func): def wrapper(*args, **kwargs): print(f"Calling {func.__name__} with args: {a
43 2
|
15天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
52 0
|
算法 安全 量子技术
【Python】蒙特卡洛模拟 | PRNG 伪随机数发生器 | 马特赛特旋转算法 | LCG 线性同余算法 | Python Random 模块
【Python】蒙特卡洛模拟 | PRNG 伪随机数发生器 | 马特赛特旋转算法 | LCG 线性同余算法 | Python Random 模块
387 0
|
5月前
|
机器学习/深度学习 数据采集 安全
Python中的random模块及相关模块详解
随机函数是计算机科学中一个基础而又重要的概念,random模块为我们提供了丰富的功能来处理随机性。 通过深入学习和应用random模块以及numpy、secrets和matplotlib等相关模块,我们可以更好地处理各种随机性相关的问题。 无论是简单的随机数生成,还是复杂的随机分布和安全随机数,Python都为我们提供了强大的工具和库,使我们能够在各种应用场景中灵活应对随机性需求。