python股票量化交易(6)---使用TA-Lib计算技术指标

简介: python股票量化交易(6)---使用TA-Lib计算技术指标

什么是TA-Lib


TA-Lib(Technical Analysis Library)是python提供的开源技术分析库,自发布以来,已经有20多年的历史,它包含了大约200个技术指标的计算函数和K线形态识别函数,例如MACD、RSI、KDJ、动量指标等。


我们从前面的几篇博文分析来看,如果你不了解这个库,我们直接分析股票的话,你需要完全记住所有指标的计算公式,对于数学不怎么好的人,实在不友好。但是我们有了TA-Lib库之后,就可以很方便的得到指标绘制的一些参数,这样可以大大节省我们的分析时间。


所以,本篇博文将讲解前面所有技术指标,通过TA-Lib库计算出来。那么我们首先,需要在python文件中导入这个库,具体代码如下:

import talib


SMA指标的计算


SMA也就是前面博文中讲解的均线,即simple moving average的缩写,TA-Lib库直接提供给我们talib.SMA()进行计算SMA。


使用SMA()函数有两个参数:


(1)timeperiod:也就是计算均线的时间,比如5日均线就写5,10日均线就写10,以此类推。


(2)close:收盘价,通过pandas直接导入收盘价那一列即可。


下面,我们来通过SMA()函数计算10,20,30日均线,具体代码如下所示:

import pandas as pd
import talib
df = pd.read_excel("牧原股份.xlsx")
df["SMA10"]=talib.SMA(df['close'],timeperiod=10)
df["SMA20"]=talib.SMA(df['close'],timeperiod=20)
df["SMA30"]=talib.SMA(df['close'],timeperiod=30)


不过这里我们需要注意,在计算均线之时,必定均线前n天是空值。比如这里计算10日均线,那么前9日是没有值的。而没有值默认会填充NaN,为了绘图时的数据好看,我们需要将这前N天的空白值赋值为第一天均线的有效值,这样看起来就会有空白的曲线。具体代码如下所示:

df['SMA10'].fillna(method="bfill",inplace=True)
df['SMA20'].fillna(method="bfill",inplace=True)
df['SMA30'].fillna(method="bfill",inplace=True)


当前,我们的均线其实还有很多不同的计算方法,比如计算指数移动平均值时,用的是EMA方法,而计算加权移动平均值时,计算的是WMA方法。不过,这些这些计算都有一个通用的方法MA,它通过最后一个参数matype区分是计算EMA,还是WMA,或者SMA。例如:

df['ma10']=talib.MA(df['close'],timeperiod=10,matype=0)
df['ma20']=talib.MA(df['close'],timeperiod=20,matype=1)
df['ma30']=talib.MA(df['close'],timeperiod=30,matype=2)


0代表SMA,1代表EMA,2代表WMA,其他的参数数值,后面讲解其他指标时我们在介绍,这三个为最常用的方法,需要记住。


完整绘制均线的代码如下:

import pandas as pd
import talib
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
df = pd.read_excel("牧原股份.xlsx")
df['date'] = pd.to_datetime(df['date'])
df['date'] = df['date'].apply(lambda x: x.strftime('%Y-%m-%d'))
df["SMA10"]=talib.SMA(df['close'],timeperiod=10)
df["SMA20"]=talib.SMA(df['close'],timeperiod=20)
df["SMA30"]=talib.SMA(df['close'],timeperiod=30)
df['SMA10'].fillna(method="bfill",inplace=True)
df['SMA20'].fillna(method="bfill",inplace=True)
df['SMA30'].fillna(method="bfill",inplace=True)
ax.plot(np.arange(0, len(df)), df['SMA10'])  # 绘制5日均线
ax.plot(np.arange(0, len(df)), df['SMA20'])  # 绘制10日均线
ax.plot(np.arange(0, len(df)), df['SMA30'])  # 绘制30日均线
ax.xaxis.set_major_locator(ticker.MaxNLocator(20))
def format_date(x, pos=None):
    if x < 0 or x > len(df['date']) - 1:
        return ''
    return df['date'][int(x)]
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')
plt.show()


运行之后,显示效果如下图所示:


MACD指标的计算


既然TA-Lib库直接提供了SMA()方法计算均线,那么肯定也会有MACD方法提供给你计算MACD的参数。具体的使用方法如下:

dif, dea, bar = talib.MACD(df['close'].values, fastperiod=12, slowperiod=26, signalperiod=9)

可以看到,前面计算MACD参数之时,我们会计算EMA1(12日收盘价移动平均线)与EMA2(26收盘价移动平均线)对应的就是上面的12,26。同样的,计算DEA的公式span也为9,代入最后一个值。


不过,其内部实现与我们自己按公式操作其实是一样的步骤,只是TA-Lib库直接省略步骤,把方法直接给我们了,这样如果只是用于分析,多数开发者并不需要了解其原理。


虽然说它直接提供给我们计算方法MACD(),但是我们按前面公式计算是没有空值的,这里直接代码会造成空值的情况。所以我们需要额外的步骤将空值替换掉,具体代码如下:

dif[np.isnan(dif)],dea[np.isnan(dea)],bar[np.isnan(bar)]=0,0,0

完整的绘图代码如下所示:

import pandas as pd
import talib
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
df = pd.read_excel("牧原股份.xlsx")
df['date'] = pd.to_datetime(df['date'])
df['date'] = df['date'].apply(lambda x: x.strftime('%Y-%m-%d'))
dif, dea, bar = talib.MACD(df['close'].values, fastperiod=12, slowperiod=26, signalperiod=9)
dif[np.isnan(dif)], dea[np.isnan(dea)], bar[np.isnan(bar)] = 0, 0, 0
ax.plot(np.arange(0, len(df)), dif)
ax.plot(np.arange(0, len(df)), dea)
red_bar = np.where(bar > 0, 2 * bar, 0)
blue_bar = np.where(bar < 0, 2 * bar, 0)
ax.bar(np.arange(0, len(df)), red_bar, color="red")
ax.bar(np.arange(0, len(df)), blue_bar, color="blue")
ax.xaxis.set_major_locator(ticker.MaxNLocator(20))
def format_date(x, pos=None):
    # 由于前面股票数据在 date 这个位置传入的都是int
    # 因此 x=0,1,2,...
    # date_tickers 是所有日期的字符串形式列表
    if x < 0 or x > len(df['date']) - 1:
        return ''
    return df['date'][int(x)]
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')
plt.show()


运行之后,显示效果如下所示:


KDJ指标的计算


虽然说计算SMA与MACD的方法名在TA-Lib库中是一致的,但是这次还真不是KDJ函数。在TA-Lib库中计算KDJ的方法为talib.STOCH函数。首先,我们可以通过该函数计算出K、D的值,然后通过K、D计算出J值,具体的计算方式如下:

df['K'], df['D'] = talib.STOCH(df['high'].values, df['low'].values, df['close'].values, fastk_period=9, slowk_period=3,
                               slowk_matype=0, slowd_period=3, slowd_matype=0)
df['K'].fillna(0,inplace=True)
df['D'].fillna(0,inplace=True)
df['J']=3*df['K']-2*df['D']


这里fastk_period=9,slowk_period=3,slowd_period=3,虽然计算方式不同,但核心思想是一致的。同样的,使用TA-Lib库计算出来的KD值也有无效值,需要用0进行替换。


完整的绘制KDJ曲线代码如下:

import pandas as pd
import talib
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
fig = plt.figure(figsize=(12, 8))
ax = fig.add_subplot(111)
df = pd.read_excel("牧原股份.xlsx")
df['date'] = pd.to_datetime(df['date'])
df['date'] = df['date'].apply(lambda x: x.strftime('%Y-%m-%d'))
df['K'], df['D'] = talib.STOCH(df['high'].values, df['low'].values, df['close'].values, fastk_period=9, slowk_period=3,
                               slowk_matype=0, slowd_period=3, slowd_matype=0)
df['K'].fillna(0,inplace=True)
df['D'].fillna(0,inplace=True)
df['J']=3*df['K']-2*df['D']
ax.plot(df["date"], df["K"], label ="K")
ax.plot(df["date"], df["D"], label ="D")
ax.plot(df["date"], df["J"], label ="J")
plt.legend()
ax.xaxis.set_major_locator(ticker.MaxNLocator(20))
def format_date(x, pos=None):
    # 由于前面股票数据在 date 这个位置传入的都是int
    # 因此 x=0,1,2,...
    # date_tickers 是所有日期的字符串形式列表
    if x < 0 or x > len(df['date']) - 1:
        return ''
    return df['date'][int(x)]
ax.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
plt.setp(plt.gca().get_xticklabels(), rotation=45, horizontalalignment='right')
plt.show()


运行之后,显示效果如下所示:

相关文章
|
2天前
|
JavaScript 前端开发 Android开发
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
34 13
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
4天前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
29 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
4天前
|
JavaScript 搜索推荐 Android开发
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
23 8
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
1月前
|
API Python
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
【02】优雅草央央逆向技术篇之逆向接口协议篇-以小红书为例-python逆向小红书将用户名转换获得为uid-优雅草央千澈
95 1
|
1月前
|
安全 数据挖掘 编译器
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
【01】优雅草央央逆向技术篇之逆向接口协议篇-如何用python逆向接口协议?python逆向接口协议的原理和步骤-优雅草央千澈
66 6
|
2月前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
116 2
|
2月前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
64 18
|
2月前
|
Python
使用Python计算字符串的SHA-256散列值
使用Python计算字符串的SHA-256散列值
74 7

热门文章

最新文章

推荐镜像

更多