机器学习实战:用 SVD 压缩图像(已上线)

简介: 机器学习实战:用 SVD 压缩图像(已上线)

SVD


前文我们了解了奇异值分解(SVD)的原理,今天就实战一下,用矩阵的奇异值分解对图片进行压缩.


Learn by doing


我做了一个在线的图像压缩应用,大家可以感受一下。


功能很简单,上传需要压缩的图片,选择压缩比,提交即可。

640.jpg


https://huggingface.co/spaces/beihai/Image-Compression-with-SVD


下面咱们就一起看看实现过程


用SVD压缩图像

640.png


640.png

原理很简单:


将图片分解为RGB三颜色矩阵,将每个颜色矩阵进行奇异值分解,然后选择指定数量的特征对矩阵进行压缩。


核心代码


完整代码大家可以clone我的huggingface


https://huggingface.co/spaces/beihai/Image-Compression-with-SVD


核心代码1:


p表示奇异值的百分比,根据指定的清晰度提取奇异值清晰度越高,压缩比越低,提取的奇异值的个数也就越多,图片也就越不会失真)


def rebuild_img(u, sigma, v, percent): 
    m = len(u)
    n = len(v)
    a = np.zeros((m, n))
    count = (int)(sum(sigma))
    curSum = 0
    k = 0
    while curSum <= count * percent:
        uk = u[:, k].reshape(m, 1)
        vk = v[k].reshape(1, n)
        a += sigma[k] * np.dot(uk, vk)
        curSum += sigma[k]
        k += 1
    a[a < 0] = 0
    a[a > 255] = 255


核心代码2: 主要就是定义inderence函数和gradio前端的实现


import os
os.system("pip install --upgrade pip")
os.system("pip install opencv-python-headless")
import cv2
import numpy as np
import gradio as gr
from func import rebuild_img
def inference(img,k):
    input_img = cv2.imread(img, cv2.IMREAD_COLOR)    
    u, sigma, v = np.linalg.svd(input_img[:, :, 0])
    R = rebuild_img(u, sigma, v, k)
    u, sigma, v = np.linalg.svd(input_img[:, :, 1])
    G = rebuild_img(u, sigma, v, k)
    u, sigma, v = np.linalg.svd(input_img[:, :, 2])
    B = rebuild_img(u, sigma, v, k)
    restored_img = np.stack((R, G, B), 2)
    return Image.fromarray(restored_img[:, :, ::-1])
gr.Interface(
    inference, 
    [
    gr.inputs.Image(type="filepath", label="Input"),gr.inputs.Slider(0, 1, 0.1,default=0.6,label= 'Compression ratio')], 
    gr.outputs.Image(type="pil", label="Output"),
    title=title,
    description=description,
    article=article
    ).launch(enable_queue=True,cache_examples=True,share=True)


上线


Gradio + Huggingface 上线机器学习应用(纯免费)我已经介绍过很多遍了,这里就不赘述了,还不太熟悉的同学请移步我这篇文章:腾讯的这个算法,我搬到了网上,随便玩!


这里就提一下遇到的小问题及解决方法吧。


由于用了cv2,所以要安装opencv-python,但是运行中报错如下:


File "/home/user/.local/lib/python3.8/site-packages/cv2/__init__.py", line 8, in <module>
    from .cv2 import *
ImportError: libGL.so.1: cannot open shared object file: No such file or directory


针对这个错误,网上有以下方法:


1 yum安装:


yum install libglvnd-glx


2 重新安装opencv包:


pip uninstall opencv-python
pip install opencv-python-headless


第一种方法需要root权限,建议直接第二种方法吧,省事。

相关文章
|
3月前
|
机器学习/深度学习 存储 运维
机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统
本研究通过实验演示了异常标记如何逐步完善异常检测方案和主要分类模型在欺诈检测中的应用。实验结果表明,Isolation Forest作为一个强大的异常检测模型,无需显式建模正常模式即可有效工作,在处理未见风险事件方面具有显著优势。
260 46
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
6月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
6月前
|
机器学习/深度学习 人工智能 Java
Java机器学习实战:基于DJL框架的手写数字识别全解析
在人工智能蓬勃发展的今天,Python凭借丰富的生态库(如TensorFlow、PyTorch)成为AI开发的首选语言。但Java作为企业级应用的基石,其在生产环境部署、性能优化和工程化方面的优势不容忽视。DJL(Deep Java Library)的出现完美填补了Java在深度学习领域的空白,它提供了一套统一的API,允许开发者无缝对接主流深度学习框架,将AI模型高效部署到Java生态中。本文将通过手写数字识别的完整流程,深入解析DJL框架的核心机制与应用实践。
369 3
|
6月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
7月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
R1类模型推理能力评测手把手实战
200 2
|
7月前
|
人工智能 自然语言处理 网络安全
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
|
7月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
603 2
|
7月前
|
数据可视化 API 开发者
R1类模型推理能力评测手把手实战
随着DeepSeek-R1模型的广泛应用,越来越多的开发者开始尝试复现类似的模型,以提升其推理能力。
499 3
|
7月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
136 0

热门文章

最新文章