CuteCharts一个敲可爱的 Python 手绘风格可视化图表库

简介: CuteCharts一个敲可爱的 Python 手绘风格可视化图表库

640.png


推荐一个可以绘制手绘风格图表的Python库,作者chenjiandong将JS 库 chart.xkcd与 Python/Notebook 相结合开发了cutecharts 项目。

640.gif


from:github.com/timqian/chart.xkcd


CuteCharts项目地址:github.com/chenjiandong


安装很简单:


$ pip install cutecharts


Cutecharts 结构与 pyecharts 基本保持一致,拥有 pyecharts 的所有核心功能。但是整体更加小巧,代码更加精简。


from cutecharts.charts import Bar
from cutecharts.components import Page
from cutecharts.faker import Faker
def bar_base() -> Bar:
    chart = Bar("Bar-基本示例")
    chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel")
    chart.add_series("series-A", Faker.values())
    return chart


然后就输出风格可爱的Bar图表了


640.png


Cutecharts还有Line、Pie、Radar、Scatter等图表类型


image.png


也可以通过API修改图表各项参数,还以Bar为例


cutecharts.charts.Bar.set_options


Params                                          Desc
------                                          ----
labels: Iterable                                X 坐标轴标签数据
x_label: str = ""                               X 坐标轴名称
y_label: str = ""                               Y 坐标轴名称
y_tick_count: int = 3                           Y 轴刻度分割段数
colors: Optional[Iterable] = None               label 颜色数组
font_family: Optional[str] = None               CSS font-family


cutecharts.charts.Bar.add_series


Params                                          Desc
------                                          ----
name: str                                       series 名称
data: Iterable                                  series 数据列表


Bar-调整颜色


def bar_tickcount_colors():
    chart = Bar("Bar-调整颜色")
    chart.set_options(labels=Faker.choose(), y_tick_count=10, colors=Faker.colors)
    chart.add_series("series-A", Faker.values())
    return chart


更多有意思的玩法,大家赶紧挖掘一下吧!

相关文章
|
2月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
4月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
560 0
|
4月前
|
存储 数据可视化 BI
Python可视化应用——学生成绩分布柱状图展示
本程序使用Python读取Excel中的学生成绩数据,统计各分数段人数,并通过Matplotlib库绘制柱状图展示成绩分布。同时计算最高分、最低分及平均分,实现成绩可视化分析。
347 0
|
2月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
2月前
|
机器学习/深度学习 搜索推荐 数据可视化
基于python大数据的音乐可视化与推荐系统
本研究基于Python实现音乐数据采集、清洗、分析与可视化,并结合协同过滤算法构建个性化推荐系统。通过Echarts展示音乐热度及用户偏好,提升用户体验,助力音乐产业智能化发展。
|
2月前
|
搜索推荐 算法 大数据
基于python大数据的旅游景点可视化与推荐系统
本系统基于大数据与网络技术,构建个性化旅游推荐平台。通过收集用户偏好及行为数据,结合机器学习算法,提供精准的旅游目的地、住宿及交通推荐,旨在优化旅游信息传递,提升用户决策效率与旅行体验。
|
3月前
|
数据采集 数据可视化 API
驱动业务决策:基于Python的App用户行为分析与可视化方案
驱动业务决策:基于Python的App用户行为分析与可视化方案
|
4月前
|
存储 数据采集 数据可视化
Python自动化分析知网文献:爬取、存储与可视化
Python自动化分析知网文献:爬取、存储与可视化

推荐镜像

更多
下一篇
oss云网关配置