CuteCharts一个敲可爱的 Python 手绘风格可视化图表库

简介: CuteCharts一个敲可爱的 Python 手绘风格可视化图表库

640.png


推荐一个可以绘制手绘风格图表的Python库,作者chenjiandong将JS 库 chart.xkcd与 Python/Notebook 相结合开发了cutecharts 项目。

640.gif


from:github.com/timqian/chart.xkcd


CuteCharts项目地址:github.com/chenjiandong


安装很简单:


$ pip install cutecharts


Cutecharts 结构与 pyecharts 基本保持一致,拥有 pyecharts 的所有核心功能。但是整体更加小巧,代码更加精简。


from cutecharts.charts import Bar
from cutecharts.components import Page
from cutecharts.faker import Faker
def bar_base() -> Bar:
    chart = Bar("Bar-基本示例")
    chart.set_options(labels=Faker.choose(), x_label="I'm xlabel", y_label="I'm ylabel")
    chart.add_series("series-A", Faker.values())
    return chart


然后就输出风格可爱的Bar图表了


640.png


Cutecharts还有Line、Pie、Radar、Scatter等图表类型


image.png


也可以通过API修改图表各项参数,还以Bar为例


cutecharts.charts.Bar.set_options


Params                                          Desc
------                                          ----
labels: Iterable                                X 坐标轴标签数据
x_label: str = ""                               X 坐标轴名称
y_label: str = ""                               Y 坐标轴名称
y_tick_count: int = 3                           Y 轴刻度分割段数
colors: Optional[Iterable] = None               label 颜色数组
font_family: Optional[str] = None               CSS font-family


cutecharts.charts.Bar.add_series


Params                                          Desc
------                                          ----
name: str                                       series 名称
data: Iterable                                  series 数据列表


Bar-调整颜色


def bar_tickcount_colors():
    chart = Bar("Bar-调整颜色")
    chart.set_options(labels=Faker.choose(), y_tick_count=10, colors=Faker.colors)
    chart.add_series("series-A", Faker.values())
    return chart


更多有意思的玩法,大家赶紧挖掘一下吧!

相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
200 0
|
11天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
67 7
|
24天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
27天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
29天前
|
数据可视化 搜索推荐 Shell
Python与Plotly:B站每周必看榜单的可视化解决方案
Python与Plotly:B站每周必看榜单的可视化解决方案
|
2月前
|
机器学习/深度学习 数据可视化 Python
Python实用记录(三):通过netron可视化模型
使用Netron工具在Python中可视化神经网络模型,包括安装Netron、创建文件和运行文件的步骤。
47 2
Python实用记录(三):通过netron可视化模型
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
2月前
|
数据采集 Web App开发 数据可视化
Python爬虫教程:Selenium可视化爬虫的快速入门
Python爬虫教程:Selenium可视化爬虫的快速入门
|
3月前
|
数据可视化 Python
Python数据可视化-动态柱状图可视化
Python数据可视化-动态柱状图可视化
|
3月前
|
JSON 数据可视化 数据处理
Python数据可视化-折线图可视化
Python数据可视化-折线图可视化