手把手教你Python实现30 个主流机器学习算法

简介: 手把手教你Python实现30 个主流机器学习算法

第三重境界便是Python实现主流机器学习模型。今天向大家推荐普林斯顿博士后 David Bourgin 最近开源的项目:用 NumPy 手写所有主流 ML 模型,看了一下,代码可读性极强。


640.png


在每一个代码集下,作者都会提供不同实现的参考资料,例如模型的效果示例图、参考论文和参考链接等。


以线性回归为例,作者不但用500行代码实现了OLS/Ridge/Logistic/Bayesian linear regression


import numpy as np
from ..utils.testing import is_symmetric_positive_definite, is_number
class LinearRegression:
    def __init__(self, fit_intercept=True):
        """
        An ordinary least squares regression model fit via the normal equation.
        Parameters
        fit_intercept : bool
            Whether to fit an additional intercept term in addition to the
            model coefficients. Default is True.
        """
        self.beta = None
        self.fit_intercept = fit_intercept
    def fit(self, X, y):
        """
        Fit the regression coefficients via maximum likelihood.
        Parameters
        ----------
        X : :py:class:`ndarray <numpy.ndarray>` of shape `(N, M)`
            A dataset consisting of `N` examples, each of dimension `M`.
        y : :py:class:`ndarray <numpy.ndarray>` of shape `(N, K)`
            The targets for each of the `N` examples in `X`, where each target
            has dimension `K`.
        """
        # convert X to a design matrix if we're fitting an intercept
        if self.fit_intercept:
            X = np.c_[np.ones(X.shape[0]), X]
        pseudo_inverse = np.dot(np.linalg.inv(np.dot(X.T, X)), X.T)
        self.beta = np.dot(pseudo_inverse, y)
    def predict(self, X):
        """
        Used the trained model to generate predictions on a new collection of
        data points.
        Parameters
       ----------
        X : :py:class:`ndarray <numpy.ndarray>` of shape `(Z, M)`
            A dataset consisting of `Z` new examples, each of dimension `M`.
        Returns
        -------
        y_pred : :py:class:`ndarray <numpy.ndarray>` of shape `(Z, K)`
            The model predictions for the items in `X`.
        """
        # convert X to a design matrix if we're fitting an intercept
        if self.fit_intercept:
            X = np.c_[np.ones(X.shape[0]), X]
        return np.dot(X, self.beta)


还画出了手写与调用sklearn的对比:


640.jpg


更多精彩内容,值得大家仔细挖掘,相信跟着完整实现一遍之后,大家对机器学习基础的掌握也将极其牢固。另外,建议大家配合作者提供的documentation 一同食用,效果更佳。


640.png

相关文章
|
3天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
92 55
|
21天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
65 4
|
18天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
123 67
|
18天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
114 61
|
12天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
83 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
19天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
18天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
18天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
37 1
|
27天前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
26天前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
39 0