数据结构与算法__07--前序、中序、后序线索化二叉树,前序、中序、后序线索化二叉树遍历(Java语言版本)

简介: 前序、中序、后序线索化二叉树,前序、中序、后序线索化二叉树遍历汇总(Java语言版本)

@[toc]

1 前序

//前序线索化二叉树
public void threadedPreNode(HeroNode node) {
    if (node == null) {
        return;
    }
    //线索化当前节点
    if (node.getLeft() == null) {
        node.setLeft(pre);
        node.setLeftType(1);
    }
    if (pre != null && pre.getRight() == null) {
        pre.setRight(node);
        pre.setRightType(1);
    }
    pre = node;
    //线索化左子树
    if (node.getLeftType() != 1) {
        threadedPreNode(node.getLeft());
    }
    //线索化右子树
    if (node.getRightType() != 1) {
        threadedPreNode(node.getRight());
    }
 
}
 
//前序线索化遍历
public void threadedPreList() {
    //定义一个变量,存储当前遍历的结点,从root开始
    HeroNode node = root;
    while (node != null) {
        //打印当前这个结点
        System.out.println(node);
        while (node.getLeftType() == 0) {
            node = node.getLeft();
            System.out.println(node);
        }
        //如果当前结点的右指针指向的是后继结点,就一直输出
        while (node.getRightType() == 1) {
            //获取到当前结点的后继结点
            node = node.getRight();
            System.out.println(node);
        }
        //替换这个遍历的结点
        node = node.getRight();
 
    }
}

2 后序

2.1 为节点添加父节点

2.1.1 节点中创建方法

//前序遍历添加父节点
public void preOrderAddPar() {
    while (this.getLeft() != null) {
        this.getLeft().setParent(this);
        break;
    }
    while (this.getRight() != null) {
        this.getRight().setParent(this);
        break;
    }
 
    if (this.getLeft() != null) {//2.向左遍历
        this.getLeft().preOrderAddPar();
    }
    if (this.getRight() != null) {//3.向右遍历
        this.getRight().preOrderAddPar();
    }
}

2.1.2 二叉树中创建方法

//前序遍历添加父节点
public void preOrderAddPar() {
    if (this.root != null) {
        this.root.preOrderAddPar();
    } else {
        System.out.println("二叉树为空");
    }
}

2.2 后序线索化及遍历

//后序线索化二叉树   8,10,3,14,6,1
public void threadedPostNode(HeroNode node) {
    if (node == null) {
        return;
    }
    //线索化左子树
    threadedPostNode(node.getLeft());
 
    //线索化右子树
    threadedPostNode(node.getRight());
    //线索化当前节点
    if (node.getLeft() == null) {
        node.setLeft(pre);
        node.setLeftType(1);
    }
    if (pre != null && pre.getRight() == null) {
        pre.setRight(node);
        pre.setRightType(1);
    }
    pre = node;
}
 
//后序遍历线索化二叉树的方法
public void threadedPostList() {//8,10,3,14,6,1
    HeroNode node = root;
    while(node != null && node.getLeftType()!=1) {
        node = node.getLeft();
    }
 
    HeroNode pre = null;
    while(node != null) {
        //右节点是线索
        if (node.getRightType() == 1) {
            System.out.println(node);
            pre = node;
            node = node.getRight();
 
        } else {
            //如果上个处理的节点是当前节点的右节点
            if (node.getRight() == pre) {
                System.out.println(node);
                if (node == root) {
                    return;
                }
 
                pre = node;
                node = node.getParent();
 
            } else {    //如果从左节点的进入则找到有子树的最左节点
                node = node.getRight();
                while (node != null && node.getLeftType() !=1) {
                    node = node.getLeft();
                }
            }
        }
    }
}

3 中序

//重载中序线索化二叉树
public void threadedNode() {
    threadedNode(root);
}
 
//中序遍历线索化二叉树的方法
public void threadedList() {
    //定义一个变量,存储当前遍历的结点,从root开始
    HeroNode node = root;
    while (node != null) {
        //循环的找到leftType == 1的结点,第一个找到就是8结点
        //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
        //处理后的有效结点
        while (node.getLeftType() == 0) {
            node = node.getLeft();
        }
 
        //打印当前这个结点
        System.out.println(node);
        //如果当前结点的右指针指向的是后继结点,就一直输出
        while (node.getRightType() == 1) {
            //获取到当前结点的后继结点
            node = node.getRight();
            System.out.println(node);
        }
        //替换这个遍历的结点
        node = node.getRight();
 
    }
}
 
//中序线索化二叉树
public void threadedNode(HeroNode node) {
    if (node == null) {
        return;
    }
    //线索化左子树
    threadedNode(node.getLeft());
    //线索化当前节点
    if (node.getLeft() == null) {
        node.setLeft(pre);
        node.setLeftType(1);
    }
    if (pre != null && pre.getRight() == null) {
        pre.setRight(node);
        pre.setRightType(1);
    }
    pre = node;
    //线索化右子树
    threadedNode(node.getRight());
}

4 完整代码

package edu.seu.demo10tree.demothreadedbinarytree;
 
public class Demo01ThreadedBinaryTree {
    public static void main(String[] args) {
        //测试一把中序线索二叉树的功能
        HeroNode root = new HeroNode(1, "tom");
        HeroNode node2 = new HeroNode(3, "jack");
        HeroNode node3 = new HeroNode(6, "smith");
        HeroNode node4 = new HeroNode(8, "mary");
        HeroNode node5 = new HeroNode(10, "king");
        HeroNode node6 = new HeroNode(14, "dim");
 
        //二叉树,后面我们要递归创建, 现在简单处理使用手动创建
        root.setLeft(node2);
        root.setRight(node3);
        node2.setLeft(node4);
        node2.setRight(node5);
        node3.setLeft(node6);
 
        
        ThreadedBinaryTree threadedBinaryTree = new ThreadedBinaryTree();
        threadedBinaryTree.setRoot(root);
 
        //为节点遍历添加父节点
        threadedBinaryTree.preOrderAddPar();
        
//        中序  8, 3, 10, 1, 14, 6
/*        threadedBinaryTree.threadedNode();
        HeroNode leftNode = node5.getLeft();
        HeroNode rightNode = node5.getRight();
        System.out.println("10号结点的前驱结点是="  + leftNode); //3
        System.out.println("10号结点的后继结点是="  + rightNode); //1
        System.out.println("使用线索化的方式遍历 线索化二叉树");
        threadedBinaryTree.threadedList();*/
 
//        前序 1,3,8,10,6,14
/*        threadedBinaryTree.threadedPreNode(root);
        HeroNode leftNode = node5.getLeft();
        HeroNode rightNode = node5.getRight();
        System.out.println("10号结点的前驱结点是=" + leftNode);
        System.out.println("10号结点的后继结点是=" + rightNode);
        System.out.println("使用线索化的方式遍历 线索化二叉树");
        threadedBinaryTree.threadedPreList();*/
 
        //后序8,10,3,14,6,1
        threadedBinaryTree.threadedPostNode(root);
        HeroNode leftNode = node5.getLeft();
        HeroNode rightNode = node5.getRight();
        System.out.println("10号结点的前驱结点是=" + leftNode);
        System.out.println("10号结点的后继结点是=" + rightNode);
 
        System.out.println("使用线索化的方式遍历 线索化二叉树");
        threadedBinaryTree.threadedPostList();
 
    }
}
 
class HeroNode {
    private int no;//英雄编号
    private String name;//姓名
    private HeroNode left;//左子节点
    private HeroNode right;//右子节点
    private HeroNode parent;//父节点
    private int rightType;//表示右子节点:指针:0,后继:1
    private int leftType;//表示左子节点:指针:0  前驱:1
 
    public HeroNode getParent() {
        return parent;
    }
 
    public void setParent(HeroNode parent) {
        this.parent = parent;
    }
 
    public int getRightType() {
        return rightType;
    }
 
    public void setRightType(int rightType) {
        this.rightType = rightType;
    }
 
    public int getLeftType() {
        return leftType;
    }
 
    public void setLeftType(int leftType) {
        this.leftType = leftType;
    }
 
    public HeroNode(int no, String name) {
        this.no = no;
        this.name = name;
    }
 
    //读取与设置私有变量
    public int getNo() {
        return no;
    }
 
    public void setNo(int no) {
        this.no = no;
    }
 
    public String getName() {
        return name;
    }
 
    public void setName(String name) {
        this.name = name;
    }
 
    public HeroNode getLeft() {
        return left;
    }
 
    public void setLeft(HeroNode left) {
        this.left = left;
    }
 
    public HeroNode getRight() {
        return right;
    }
 
    public void setRight(HeroNode right) {
        this.right = right;
    }
 
    //打印输出
 
    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                ", name='" + name + '\'' +
                '}';
    }
 
    //前序遍历添加父节点
    public void preOrderAddPar() {
        while (this.getLeft() != null) {
            this.getLeft().setParent(this);
            break;
        }
        while (this.getRight() != null) {
            this.getRight().setParent(this);
            break;
        }
 
        if (this.getLeft() != null) {//2.向左遍历
            this.getLeft().preOrderAddPar();
        }
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().preOrderAddPar();
        }
    }
 
    //前序遍历
    public void preOrder() {
        System.out.println(this);//1.输出父节点
        if (this.getLeft() != null) {//2.向左遍历
            this.getLeft().preOrder();
        }
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().preOrder();
        }
    }
 
    //中序遍历
    public void infixOrder() {
        if (this.getLeft() != null) {
            this.getLeft().infixOrder();
        }
        System.out.println(this);
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().infixOrder();
        }
    }
 
    //后序遍历
    public void postOrder() {
        if (this.getLeft() != null) {
            this.getLeft().postOrder();
        }
        if (this.getRight() != null) {//3.向右遍历
            this.getRight().postOrder();
        }
        System.out.println(this);
    }
 
    //前序遍历查找
    public HeroNode preOrderSearch(int no) {
        System.out.println("前序查找比较次数");
        if (this.getNo() == no) {
            return this;
        }
        HeroNode resHero = null;
        if (this.left != null) {
            resHero = this.left.preOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
        if (this.right != null) {
            resHero = this.right.preOrderSearch(no);
        }
        return resHero;
    }
 
    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        HeroNode resHero = null;
        if (this.left != null) {
            resHero = this.left.infixOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
        System.out.println("中序查找比较次数");
        if (this.getNo() == no) {
            return this;
        }
        if (this.right != null) {
            resHero = this.right.infixOrderSearch(no);
        }
        return resHero;
    }
 
    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        HeroNode resHero = null;
        if (this.left != null) {
            resHero = this.left.postOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
 
        if (this.right != null) {
            resHero = this.right.postOrderSearch(no);
        }
        if (resHero != null) {
            return resHero;
        }
        System.out.println("后序查找比较次数");
        if (this.getNo() == no) {
            return this;
        }
        return resHero;
    }
 
    //删除节点
    public void delHeroNode(int no) {
        if (this.left != null && this.left.getNo() == no) {
            this.left = null;
            return;
        }
        if (this.right != null && this.right.getNo() == no) {
            this.right = null;
            return;
        }
        if (this.left != null) {
            this.left.delHeroNode(no);
        }
        if (this.right != null) {
            this.right.delHeroNode(no);
        }
    }
 
}
 
class ThreadedBinaryTree {
    private HeroNode root;//根节点
    private HeroNode pre = null;
 
    public ThreadedBinaryTree() {
    }
 
    public HeroNode getRoot() {
        return root;
    }
 
    public void setRoot(HeroNode root) {
        this.root = root;
    }
 
    //重载中序线索化二叉树
    public void threadedNode() {
        threadedNode(root);
    }
 
    //中序遍历线索化二叉树的方法
    public void threadedList() {
        //定义一个变量,存储当前遍历的结点,从root开始
        HeroNode node = root;
        while (node != null) {
            //循环的找到leftType == 1的结点,第一个找到就是8结点
            //后面随着遍历而变化,因为当leftType==1时,说明该结点是按照线索化
            //处理后的有效结点
            while (node.getLeftType() == 0) {
                node = node.getLeft();
            }
 
            //打印当前这个结点
            System.out.println(node);
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while (node.getRightType() == 1) {
                //获取到当前结点的后继结点
                node = node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node = node.getRight();
 
        }
    }
 
    //中序线索化二叉树
    public void threadedNode(HeroNode node) {
        if (node == null) {
            return;
        }
        //线索化左子树
        threadedNode(node.getLeft());
        //线索化当前节点
        if (node.getLeft() == null) {
            node.setLeft(pre);
            node.setLeftType(1);
        }
        if (pre != null && pre.getRight() == null) {
            pre.setRight(node);
            pre.setRightType(1);
        }
        pre = node;
        //线索化右子树
        threadedNode(node.getRight());
    }
 
    //后序线索化二叉树   8,10,3,14,6,1
    public void threadedPostNode(HeroNode node) {
        if (node == null) {
            return;
        }
        //线索化左子树
        threadedPostNode(node.getLeft());
 
        //线索化右子树
        threadedPostNode(node.getRight());
        //线索化当前节点
        if (node.getLeft() == null) {
            node.setLeft(pre);
            node.setLeftType(1);
        }
        if (pre != null && pre.getRight() == null) {
            pre.setRight(node);
            pre.setRightType(1);
        }
        pre = node;
    }
 
    //后序遍历线索化二叉树的方法
    public void threadedPostList() {//8,10,3,14,6,1
        HeroNode node = root;
        while(node != null && node.getLeftType()!=1) {
            node = node.getLeft();
        }
 
        HeroNode preNode = null;
        while(node != null) {
            //右节点是线索
            if (node.getRightType() == 1) {
                System.out.println(node);
                preNode = node;
                node = node.getRight();
 
            } else {
                //如果上个处理的节点是当前节点的右节点
                if (node.getRight() == preNode) {
                    System.out.println(node);
                    if (node == root) {
                        return;
                    }
 
                    preNode = node;
                    node = node.getParent();
 
                } else {    //如果从左节点的进入则找到有子树的最左节点
                    node = node.getRight();
                    while (node != null && node.getLeftType() !=1) {
                        node = node.getLeft();
                    }
                }
            }
        }
    }
 
    //前序线索化二叉树
    public void threadedPreNode(HeroNode node) {
        if (node == null) {
            return;
        }
        //线索化当前节点
        if (node.getLeft() == null) {
            node.setLeft(pre);
            node.setLeftType(1);
        }
        if (pre != null && pre.getRight() == null) {
            pre.setRight(node);
            pre.setRightType(1);
        }
        pre = node;
        //线索化左子树
        if (node.getLeftType() != 1) {
            threadedPreNode(node.getLeft());
        }
        //线索化右子树
        if (node.getRightType() != 1) {
            threadedPreNode(node.getRight());
        }
 
    }
 
    //前序线索化遍历
    public void threadedPreList() {
        //定义一个变量,存储当前遍历的结点,从root开始
        HeroNode node = root;
        while (node != null) {
            //打印当前这个结点
            System.out.println(node);
            while (node.getLeftType() == 0) {
                node = node.getLeft();
                System.out.println(node);
            }
            //如果当前结点的右指针指向的是后继结点,就一直输出
            while (node.getRightType() == 1) {
                //获取到当前结点的后继结点
                node = node.getRight();
                System.out.println(node);
            }
            //替换这个遍历的结点
            node = node.getRight();
 
        }
    }
 
    //前序遍历添加父节点
    public void preOrderAddPar() {
        if (this.root != null) {
            this.root.preOrderAddPar();
        } else {
            System.out.println("二叉树为空");
        }
    }
    //前序遍历
    public void preOrder() {
        if (this.root != null) {
            this.root.preOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }
 
    //中序遍历
    public void infixOrder() {
        if (this.root != null) {
            this.root.infixOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }
 
    //后序遍历
    public void postOrder() {
        if (this.root != null) {
            this.root.postOrder();
        } else {
            System.out.println("二叉树为空");
        }
    }
 
    //前序遍历查找
    public HeroNode preOrderSearch(int no) {
        if (root != null) {
            return root.preOrderSearch(no);
        } else {
            return null;
        }
    }
 
    //中序遍历查找
    public HeroNode infixOrderSearch(int no) {
        if (root != null) {
            return root.infixOrderSearch(no);
        } else {
            return null;
        }
    }
 
    //后序遍历查找
    public HeroNode postOrderSearch(int no) {
        if (root != null) {
            return this.root.postOrderSearch(no);
        } else {
            return null;
        }
    }
 
    //删除节点
    public void delHeroNode(int no) {
        if (root != null) {
            if (root.getNo() == no) {
                root = null;
            } else {
                root.delHeroNode(no);
            }
        } else {
            System.out.println("二叉树为空");
        }
    }
}
相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
70 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
17天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
66 8
|
1月前
|
存储 Java
数据结构第二篇【关于java线性表(顺序表)的基本操作】
数据结构第二篇【关于java线性表(顺序表)的基本操作】
31 6
|
1月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
22 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
1月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
25 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
1月前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
27 1
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
1月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
25 0
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
26 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
1月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
20 0
数据结构与算法学习十四:常用排序算法总结和对比

热门文章

最新文章

下一篇
无影云桌面