Java数据结构与算法分析(八)二叉查找树(BST)

简介: 二叉查找树又叫二叉排序树(Binary Sort Tree),或叫二叉搜索树,简称BST。BST是一种节点值之间有次序的二叉树。

在这里插入图片描述

GitHub源码分享

项目主页:https://github.com/gozhuyinglong/blog-demos
本文源码:https://github.com/gozhuyinglong/blog-demos/tree/main/java-data-structures

1. 二叉查找树(Binary Search Tree)

二叉查找树又叫二叉排序树(Binary Sort Tree),或叫二叉搜索树,简称BST。BST是一种节点值之间有次序的二叉树。其特性是:

  • 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  • 若任意节点的右子树不空,则右子树上所有节点的值均大于或等于它的根节点的值;
  • 任意节点的左、右子树也分别为二叉查找树;

是否二叉查找树

二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低,为$O(logN)$。用大$O$符号表示的时间复杂度:

算法 平均 最差
空间 $O(N)$ $O(N)$
搜索 $O(logN)$ $O(N)$
插入 $O(logN)$ $O(N)$
删除 $O(logN)$ $O(N)$

2. BST的实现

二叉查找树要求所有的节点元素都能够排序,所以我们的Node节点类需要实现Comparable接口,树中的两个元素可以使用compareTo方法进行比较。
我们节点中元素的类型为int型,所以该接口泛型为Comparable<Integer>,下面是具体实现:

2.1 节点类

  • element 为数据元素
  • left 为左子节点
  • right 为右子节点
class Node implements Comparable<Integer> {
   
   
    private final int element; // 数据元素
    private Node left; // 左子树
    private Node right; // 右子树

    private Node(Integer element) {
   
   
        this.element = element;
    }

    @Override
    public int compareTo(Integer o) {
   
   
        return o.compareTo(element);
    }
}

2.2 二叉查找树类

  • root 为树根,所有的操作均始于此

后面会在该类中增加其他方法,如添加、查找、删除等

class BinarySearchTree {
   
   
        private Node root; // 树根
}

3. 插入节点

向二叉查找树中插入的节点总是叶子节点,插入过程如下:

  1. root为空,则将插入节点设为root
  2. 当前元素与插入元素通过compareTo进行比较,若插入元素值小,并且左子节点left为空,则插入至当前节点左子节点;否则继续递归
  3. 若插入元素值大,且右子节点right为空,则插入至当前节点右子节点;否则继续递归。
  4. 若插入元素等于当前节点元素,则插入失败。注:也可以将其插入到右子节点,我这里为了方便直接放弃插入。

具体实现:
BinarySearchTree类中添加两个方法:

  • public boolean add(int element) 为公开方法
  • private boolean add(Node node, int element)为私有方法,内部递归使用
       // 添加元素
       public boolean add(int element) {
   
   
            if (root == null) {
   
   
                root = new Node(element);
                return true;
            }
            return add(root, element);
        }
        // 添加元素(递归)
        private boolean add(Node node, int element) {
   
   
            if (node.compareTo(element) < 0) {
   
   
                if (node.left == null) {
   
   
                    node.left = new Node(element);
                    return true;
                } else {
   
   
                    return add(node.left, element);
                }
            } else if (node.compareTo(element) > 0) {
   
   
                if (node.right == null) {
   
   
                    node.right = new Node(element);
                    return true;
                } else {
   
   
                    return add(node.right, element);
                }
            } else {
   
   
                return false;
            }
        }

4. 查找节点

通过二叉查找树查找元素,其过程如下:

  1. root为空,则查找失败
  2. 将当前元素与目标元素对比,若相等则查找成功。
  3. 若不相等,则继续递归查找:若目标值小于当前节点值,则查找左子树;否则,查找右子树。

具体实现:
BinarySearchTree类中添加两个方法:

  • public Node find(int element) 为公开方法
  • private Node find(Node node, int element)为私有方法,内部递归使用
      // 查找元素
      public Node find(int element) {
   
   
            if (root == null) {
   
   
                return null;
            }
            return find(root, element);
        }

        // 查询元素(递归)
        private Node find(Node node, int element) {
   
   
            if (node == null) {
   
   
                return null;
            }
            int compareResult = node.compareTo(element);
            if (compareResult < 0) {
   
   
                return find(node.left, element);
            } else if (compareResult > 0) {
   
   
                return find(node.right, element);
            } else {
   
   
                return node;
            }
        }

5. 遍历节点

BST是一个有序二叉树,通过中序遍历可顺序输出树中节点。
中序遍历过程如下:

  1. 递归遍历左子节点
  2. 输出当前节点
  3. 递归遍历右子节点

具体实现:
BinarySearchTree类中添加两个方法:

  • public void orderPrint() 为公开方法
  • private void orderPrint(Node node)为私有方法,内部递归使用
      // 遍历节点
      public void orderPrint() {
   
   
            orderPrint(root);
        }

        // 遍历节点(递归)
        private void orderPrint(Node node) {
   
   

            if (node == null) {
   
   
                return;
            }

            // 递归左子节点
            if (node.left != null) {
   
   
                orderPrint(node.left);
            }

            // 输出当前节点
            System.out.println(node.element);

            // 递归右子节点
            if (node.right != null) {
   
   
                orderPrint(node.right);
            }

        }

6. 删除节点

删除节点最为复查,共有三种情况:

6.1 目标元素为叶子节点

叶子节点最容易删除,过程如下:

  1. 找到目标节点的父节点
  2. 判断目标节点是父节点的左子树还是右子树
  3. 若是左子树,将父节点的left设为空;否则将父节点的right设为空

6.2 目标元素即有左子树,也有右子树

该情况删除操作最为复杂,过程如下:

  1. 找到目标节点的父节点
  2. 判断目标节点是父节点的左子树还是右子树
  3. 找到右子树中最小元素(叶子节点),将其赋给临时变量minNode,再将该元素从树中删除
  4. 将目标元素的属性赋予minNode
  5. 若目标元素是父节点的左子树,将父节点的left设为minNode;否则将父节点的right设为minNode

6.3 目标元素只有左子树,或只有右子树

删除过程如下

  1. 找到目标节点的父节点
  2. 判断目标节点是父节点的左子树还是右子树
  3. 若是左子树,将父节点的left设为目标节点不为空的子树;否则将父节点的right设为目标节点不为空的子树

具体实现
BinarySearchTree类中添加两个方法:

  • public boolean remove(int element) 为公开方法
  • private boolean remove(Node parentNode, Node node, int element)为私有方法,内部递归使用
      // 删除节点
      public boolean remove(int element) {
   
   
            if (root == null) {
   
   
                return false;
            }
            // 如果删除的元素是root
            if (root.compareTo(element) == 0) {
   
   
                if (root.right == null) {
   
   
                    root = root.left;
                } else {
   
   
                    root.right.left = root.left;
                    root = root.right;
                }
                return true;
            }
            return remove(null, root, element);
        }

        // 删除节点(递归)
        private boolean remove(Node parentNode, Node node, int element) {
   
   
            if (node == null) {
   
   
                return false;
            }
            // 先找到目标元素
            int compareResult = node.compareTo(element);
            if (compareResult < 0) {
   
   
                return remove(node, node.left, element);
            }
            if (compareResult > 0) {
   
   
                return remove(node, node.right, element);
            }

            // 找到目标元素,判断该节点是父节点的左子树还是右子树
            boolean isLeftOfParent = false;
            if (parentNode.left != null && parentNode.left.compareTo(element) == 0) {
   
   
                isLeftOfParent = true;
            }

            // 删除目标元素
            if (node.left == null && node.right == null) {
   
    // (1)目标元素为叶子节点,直接删除
                if (isLeftOfParent) {
   
   
                    parentNode.left = null;
                } else {
   
   
                    parentNode.right = null;
                }
            } else if (node.left != null && node.right != null) {
   
    // (2)目标元素即有左子树,也有右子树
                // 找到右子树最小值(叶子节点),并将其删除
                Node minNode = findMin(node.right);
                remove(minNode.element);
                // 将该最小值替换要删除的目标节点
                minNode.left = node.left;
                minNode.right = node.right;
                if(isLeftOfParent) {
   
   
                    parentNode.left = minNode;
                } else {
   
   
                    parentNode.right = minNode;
                }

            } else {
   
    // (3)目标元素只有左子树,或只有右子树
                if (isLeftOfParent) {
   
   
                    parentNode.left = node.left != null ? node.left : node.right;
                } else {
   
   
                    parentNode.right = node.left != null ? node.left : node.right;
                }
            }
            return true;
        }
    }

7. 完整代码

该代码根据下图二叉查找树实现,其操作包括:添加、查找、遍历、删除、查询最小值、查询最大值。

二叉查找树

public class BinarySearchTreeDemo {
   
   

    public static void main(String[] args) {
   
   
        BinarySearchTree tree = new BinarySearchTree();

        System.out.println("----------------------添加元素");
        Integer[] array = {
   
   5, 2, 7, 1, 4, 3, 7, 6, 9, 8};
        for (Integer element : array) {
   
   
            System.out.printf("添加元素[%s] --> %s\n", element, tree.add(element));
        }

        System.out.println("----------------------顺序输出(中序遍历)");
        tree.orderPrint();

        System.out.println("----------------------查找元素");
        System.out.println(tree.find(7));

        System.out.println("----------------------查找最小元素");
        System.out.println(tree.findMin());

        System.out.println("----------------------查找最大元素");
        System.out.println(tree.findMax());

        System.out.println("----------------------是否包含元素");
        System.out.println("是否包含[0] --> \t" + tree.contains(0));
        System.out.println("是否包含[2] --> \t" + tree.contains(2));

        System.out.println("----------------------删除目标元素");
        System.out.println("删除[0] --> \t" + tree.remove(0));
        tree.orderPrint();
        System.out.println("删除[1] --> \t" + tree.remove(1));
        tree.orderPrint();
        System.out.println("删除[4] --> \t" + tree.remove(4));
        tree.orderPrint();
        System.out.println("删除[7] --> \t" + tree.remove(7));
        tree.orderPrint();

    }

    private static class BinarySearchTree {
   
   
        private Node root; // 树根

        /**
         * 添加元素
         *
         * @param element
         * @return
         */
        public boolean add(int element) {
   
   
            if (root == null) {
   
   
                root = new Node(element);
                return true;
            }
            return add(root, element);
        }

        /**
         * 添加元素(递归)
         *
         * @param node
         * @param element
         * @return
         */
        private boolean add(Node node, int element) {
   
   
            if (node.compareTo(element) < 0) {
   
   
                if (node.left == null) {
   
   
                    node.left = new Node(element);
                    return true;
                } else {
   
   
                    return add(node.left, element);
                }
            } else if (node.compareTo(element) > 0) {
   
   
                if (node.right == null) {
   
   
                    node.right = new Node(element);
                    return true;
                } else {
   
   
                    return add(node.right, element);
                }
            } else {
   
   
                return false;
            }
        }

        /**
         * 查询元素
         *
         * @param element
         * @return
         */
        public Node find(int element) {
   
   
            if (root == null) {
   
   
                return null;
            }
            return find(root, element);
        }

        /**
         * 查询元素(递归)
         *
         * @param node
         * @param element
         * @return
         */
        private Node find(Node node, int element) {
   
   
            if (node == null) {
   
   
                return null;
            }
            int compareResult = node.compareTo(element);
            if (compareResult < 0) {
   
   
                return find(node.left, element);
            } else if (compareResult > 0) {
   
   
                return find(node.right, element);
            } else {
   
   
                return node;
            }
        }

        /**
         * 查找最大值
         *
         * @return
         */
        public Node findMax() {
   
   
            return findMax(root);
        }

        /**
         * 查找最大值(递归)
         *
         * @param node
         * @return
         */
        private Node findMax(Node node) {
   
   
            if (node.right == null) {
   
   
                return node;
            }
            return findMax(node.right);
        }

        /**
         * 查找最小值
         *
         * @return
         */
        private Node findMin() {
   
   
            return findMin(root);
        }

        /**
         * 查找最小值(递归)
         *
         * @param node
         * @return
         */
        private Node findMin(Node node) {
   
   
            if (node.left == null) {
   
   
                return node;
            }
            return findMin(node.left);
        }

        /**
         * 顺序输出
         */
        public void orderPrint() {
   
   
            orderPrint(root);
        }


        /**
         * 顺序输出(递归)
         *
         * @param node
         */
        private void orderPrint(Node node) {
   
   

            if (node == null) {
   
   
                return;
            }

            // 递归左子节点
            if (node.left != null) {
   
   
                orderPrint(node.left);
            }

            // 输出当前节点
            System.out.println(node.element);

            // 递归右子节点
            if (node.right != null) {
   
   
                orderPrint(node.right);
            }

        }

        /**
         * 是否包含某值
         *
         * @param element
         * @return
         */
        public boolean contains(int element) {
   
   
            if (find(element) == null) {
   
   
                return false;
            }
            return true;
        }

        /**
         * 删除目标元素
         *
         * @param element
         * @return
         */
        public boolean remove(int element) {
   
   
            if (root == null) {
   
   
                return false;
            }
            // 如果删除的元素是root
            if (root.compareTo(element) == 0) {
   
   
                if (root.right == null) {
   
   
                    root = root.left;
                } else {
   
   
                    root.right.left = root.left;
                    root = root.right;
                }
                return true;
            }
            return remove(null, root, element);
        }

        /**
         * 删除目标元素(递归),有三种情况:
         * (1)目标元素为叶子节点
         * (2)目标元素即有左子树,也有右子树
         * (3)目标元素只有左子树,或只有右子树
         *
         * @param parentNode 当前节点的父节点
         * @param node       当前节点(若当前节点上的元素与要删除的元素匹配,则删除当前节点)
         * @param element    要删除的元素
         * @return
         */
        private boolean remove(Node parentNode, Node node, int element) {
   
   
            if (node == null) {
   
   
                return false;
            }
            // 先找到目标元素
            int compareResult = node.compareTo(element);
            if (compareResult < 0) {
   
   
                return remove(node, node.left, element);
            }
            if (compareResult > 0) {
   
   
                return remove(node, node.right, element);
            }

            // 找到目标元素,判断该节点是父节点的左子树还是右子树
            boolean isLeftOfParent = false;
            if (parentNode.left != null && parentNode.left.compareTo(element) == 0) {
   
   
                isLeftOfParent = true;
            }

            // 删除目标元素
            if (node.left == null && node.right == null) {
   
    // (1)目标元素为叶子节点,直接删除
                if (isLeftOfParent) {
   
   
                    parentNode.left = null;
                } else {
   
   
                    parentNode.right = null;
                }
            } else if (node.left != null && node.right != null) {
   
    // (2)目标元素即有左子树,也有右子树
                // 找到右子树最小值(叶子节点),并将其删除
                Node minNode = findMin(node.right);
                remove(minNode.element);
                // 将该最小值替换要删除的目标节点
                minNode.left = node.left;
                minNode.right = node.right;
                if(isLeftOfParent) {
   
   
                    parentNode.left = minNode;
                } else {
   
   
                    parentNode.right = minNode;
                }

            } else {
   
    // (3)目标元素只有左子树,或只有右子树
                if (isLeftOfParent) {
   
   
                    parentNode.left = node.left != null ? node.left : node.right;
                } else {
   
   
                    parentNode.right = node.left != null ? node.left : node.right;
                }
            }
            return true;
        }
    }

    private static class Node implements Comparable<Integer> {
   
   
        private final Integer element; // 数据元素
        private Node left; // 左子树
        private Node right; // 右子树

        private Node(Integer element) {
   
   
            this.element = element;
        }

        @Override
        public int compareTo(Integer o) {
   
   
            return o.compareTo(element);
        }

        @Override
        public String toString() {
   
   
            return "Node{" +
                    "element=" + element +
                    '}';
        }
    }
}

输出结果:

----------------------添加元素
添加元素[5] --> true
添加元素[2] --> true
添加元素[7] --> true
添加元素[1] --> true
添加元素[4] --> true
添加元素[3] --> true
添加元素[7] --> false
添加元素[6] --> true
添加元素[9] --> true
添加元素[8] --> true
----------------------顺序输出(中序遍历)
1
2
3
4
5
6
7
8
9
----------------------查找元素
Node{element=7}
----------------------查找最小元素
Node{element=1}
----------------------查找最大元素
Node{element=9}
----------------------是否包含元素
是否包含[0] -->     false
是否包含[2] -->     true
----------------------删除目标元素
删除[0] -->     false
1
2
3
4
5
6
7
8
9
删除[1] -->     true
2
3
4
5
6
7
8
9
删除[4] -->     true
2
3
5
6
7
8
9
删除[7] -->     true
2
3
5
6
8
9
相关文章
|
17天前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
31 1
|
19天前
|
存储 Java
告别混乱!用Java Map优雅管理你的数据结构
【10月更文挑战第17天】在软件开发中,随着项目复杂度增加,数据结构的组织和管理至关重要。Java中的Map接口提供了一种优雅的解决方案,帮助我们高效、清晰地管理数据。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,有效提升了代码质量和维护性。
68 2
|
19天前
|
存储 Java 开发者
Java Map实战:用HashMap和TreeMap轻松解决复杂数据结构问题!
【10月更文挑战第17天】本文深入探讨了Java中HashMap和TreeMap两种Map类型的特性和应用场景。HashMap基于哈希表实现,支持高效的数据操作且允许键值为null;TreeMap基于红黑树实现,支持自然排序或自定义排序,确保元素有序。文章通过具体示例展示了两者的实战应用,帮助开发者根据实际需求选择合适的数据结构,提高开发效率。
50 2
|
7天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
47 16
|
2天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
15 6
|
3天前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
9 2
|
8天前
|
存储 Java 索引
Java中的数据结构:ArrayList和LinkedList的比较
【10月更文挑战第28天】在Java编程世界中,数据结构是构建复杂程序的基石。本文将深入探讨两种常用的数据结构:ArrayList和LinkedList,通过直观的比喻和实例分析,揭示它们各自的优势与局限,帮助你在面对不同的编程挑战时做出明智的选择。
|
16天前
|
存储 算法 Java
Java 中常用的数据结构
【10月更文挑战第20天】这些数据结构在 Java 编程中都有着广泛的应用,掌握它们的特点和用法对于提高编程能力和解决实际问题非常重要。
21 6
|
17天前
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
25 1
|
25天前
|
存储 算法 Java
Java常用的数据结构
【10月更文挑战第3天】 在 Java 中,常用的数据结构包括数组、链表、栈、队列、树、图、哈希表和集合。每种数据结构都有其特点和适用场景,如数组适用于快速访问,链表适合频繁插入和删除,栈用于实现后进先出,队列用于先进先出,树和图用于复杂关系的表示和查找,哈希表提供高效的查找性能,集合用于存储不重复的元素。合理选择和组合使用这些数据结构,可以显著提升程序的性能和效率。
下一篇
无影云桌面