m基于PSO粒子群优化的第四方物流的作业整合算法matlab仿真,对比有代理人和无代理人两种模式下最低运输费用、代理人转换费用、运输方式转化费用和时间惩罚费用

简介: m基于PSO粒子群优化的第四方物流的作业整合算法matlab仿真,对比有代理人和无代理人两种模式下最低运输费用、代理人转换费用、运输方式转化费用和时间惩罚费用

1.算法概述

    粒子群优化 (PSO)算法是通过模拟鸟群觅食过程中的迁徙和群聚行为而提出的一种基于群体智能的全局随机搜索算法。PSO是将群体(swarm)中的个体看作是在D维搜索空间中没有质量和体积的粒子(particle),每个粒子以一定的速度在解空间运动,并向自身历史最佳位置pbest和邻域历史最佳位置pbest聚集,实现对候选解的进化。

   PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。所有的粒子都有一个由被优化的函数决定的适值( fitness value),每个粒子还有一个速度决定它们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。

   PSO初始化为一群随机粒子,然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。

1.png

在找到这两个最优值时,粒子根据如下的公式(5)和(6)来更新自己的速度和位置:

2.png

    式(5)右边由三部分组成,第一部分为“惯性”或“动量”部分,反映了粒子的运动”习惯”,代表粒子有维持自己先前速度的趋势;第二部分为”认知”部分,反映了粒子对自身历史经验的记忆或回忆,代表粒子有向自身历史最佳位置逼近的趋势;第三部分为”社会”部分,反映了粒子间协同合作与知识共享的群体历史经验,代表粒子有向群体或邻域历史最佳位置逼近的趋势。 

   其中,定义的适应度函数表达式如下:

3.png

即成本函数分为四个部分:运输费用、代理人转换费用、运输方式转化费用和时间惩罚费用。

2.仿真效果预览
matlab2022a仿真结果如下:

4.png
5.png

对于代理人,结果原来应该给出了,运行完,查看MATLAB的指令窗口,如下所示:

6.png

对比两种方式,仿真对比结果如下所示(VIEW2):

7.png
8.png

3.核心MATLAB程序

%d(i,j)表示节点i到节点j之间的运输距离,0表示两点不可达到
F        = 0;
d        = func_dis(F);%调用距离函数
%q(m)表示作业m的运量;
q = 1e3*[4  7  6  3  5  7  4  7];
 
%不同代理人不同的运输方式的单位费用
w1   = 2;
w2   = 4;
w3   = 3;
w4   = 2;
cost = func_kcost1(w1,w1,w3,w4,g,G);%初始化价格,实际在公式中,通过输入运输量来确定具体的价格
 
%C(s,k,i,j)表示节点i到节点j由代理人s选择k种运输方式的单位运输费用,因为存在折扣问题,所以此变量为单调递减;
for i = 1:n
    for j = 1:n
        for s = 1:g
            for k = 1:G
                C(s,k,i,j) = cost(s,k);
            end
        end   
    end  
end 
%x(s,k,m,i,j) = 1 表示作业m在节点i和节点j之间由代理人s采用k种运输方式代理;否则x(s,k,m,i,j)=0;
x    = zeros(g,G,M,n,n);
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%p(s,l,i)表示在节点i由代理人s转换到代理人l的转换费用;
for i = 1:n
    tmp      = func_kcost2(i);
    p(:,:,i) = tmp;
end
 
 
%r(s,l,m,i)   = 1 表示作业m在节点i由代理人s转换成代理人l;否则r(s,l,m,i)=0;
r    = zeros(g,g,M,n);
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%R(k,v,m,i)   = 1 表示作业m在节点i由k种运输方式转换为v种运输方式,否则R(k,v,m,i)=0;
R    = zeros(G,G,M,n);
%Z(k,v,i)表示在节点i由k种运输方式转换为v种运输方式的单位中转费用;
for i = 1:n
    tmp      = func_kcost3(i);
    Z(:,:,i) = tmp;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
%T(m)表示作业m的时间期限;
%H(m)表示作业m的惩罚值;
%f(Tm,qm)为惩罚函数;
ET = [30.39   34   27     38.24   40.1    47.06   33.83   33.82];
LT = [31.50   40   28.5   39      43.5    48      34.5    35.00];
for m = 1:M
    T(m) = LT(m) - ET(m); 
end
 
 
 
%% 222222222222222222222222222222222222222222222222222222222222222
%% 222222222222222222222222222222222222222222222222222222222222222
%% 222222222222222222222222222222222222222222222222222222222222222
%PSO
%x(s,k,m,i,j) = 1 表示作业m在节点i和节点j之间由代理人s采用k种运输方式代理;否则x(s,k,m,i,j)=0;
%r(s,l,m,i)   = 1 表示作业m在节点i由代理人s转换成代理人l;否则r(s,l,m,i)=0;
%R(k,v,m,i)   = 1 表示作业m在节点i由k种运输方式转换为v种运输方式,否则R(k,v,m,i)=0;
%由于算法较为复杂,这里无法直接将所有因素考虑,这里采用分级优化,即对性能影响最大的因素进行优化,再给予优化结果进行次级因素优化
 
%确定路线
%确定路线
%确定路线
%初始化x,r,R,初始化的值是随便设置的
for i = 1:n
    for j = 1:n
        if d(i,j) ~= 0 & d(i,j) ~= F
           x(:,:,:,i,j) = 1; 
           r(:,:,:,i)   = 1;
           R(:,:,:,i)   = 1;
        else
           x(:,:,:,i,j) = 0; 
           r(:,:,:,i)   = 0;
           R(:,:,:,i)   = 0;
        end
    end
end
 
All_cost = fitness(M,n,g,G,C,q,d,p,Z,T,LT,ET,R,r,x);
 
 
%下面开始PSO优化
itmax               = 300;%进化代数,就是预设的迭代次数。
W(1)                = 0.729;% 粒子先前速度保持。惯性权重
a(1)                = 0.316;% 用于计算W。
c1                  = 2; %认知部分 加速系数
c2                  = 2; %社会部分 加速系数
xmax                = 1;
xmin                = 0;
ii                  = 1;
num_particle        = 100;
D                   = size(d,1);
particle            = zeros(2*num_particle,D,D,M,itmax); 
 
particle(:,:,:,:,1) = xmin+(xmax-xmin)*rand(2*num_particle,D,D,M); 
V(:,:,:,:,1)        = round((xmin-xmax)+2*(xmax-xmin)*rand(2*num_particle,D,D,M));
 
fit                 = zeros(num_particle,itmax);% 用于存储粒子的适应值
pbest               = zeros(2*num_particle,D,D,M,itmax); % 用于存储粒子的位置
 
x2                  = zeros(g,G,M,n,n,2*num_particle);
 
for m = 1:M
    for i = 1:n
        for j = 1:n
            for nn = 1 : 2*num_particle
                x2(:,:,m,i,j,nn) = particle(nn,i,j,m,1);
            end
        end  
    end   
end
 
x_tmp = zeros(g,G,M,n,n);
for nn = 1 : num_particle
    x_tmp     = x2(:,:,:,:,:,nn);
    fit(nn,1) = fitness(M,n,g,G,C,q,d,p,Z,T,LT,ET,R,r,x_tmp);
end
 
%*********************************************************
pbest(:,:,:,:,1)   = particle(:,:,:,:,1);
pbest_value(:,1) = fit(:,1);  %个体最优值
[Cs,I]           = min(pbest_value(:,1));
gbest_value(1)   = Cs; % 群最优值
 
for i=1:num_particle
    gbest(2*i-1:2*i,:,:,:,1)=particle(2*I-1:2*I,:,:,:,1);  %群最优粒子位置
end
 
tmps = 0;
route = zeros(n,n,M,2*num_particle);
for ii=2:itmax
     
    ii
    
    V(:,:,:,:,ii)        = 0.729*V(:,:,:,:,ii-1)+c1*rand*(pbest(:,:,:,:,ii-1)-particle(:,:,:,:,ii-1))+...
                                                 c2*rand*(gbest(:,:,:,:,ii-1)-particle(:,:,:,:,ii-1));
 
    V(:,:,:,:,ii)        = min(V(:,:,:,:,ii),xmax-xmin);
    V(:,:,:,:,ii)        = max(V(:,:,:,:,ii),xmin-xmax);
    particle(:,:,:,:,ii) = particle(:,:,:,:,ii-1)+V(:,:,:,:,ii);
    particle(:,:,:,:,ii) = min(particle(:,:,:,:,ii),xmax);  
    particle(:,:,:,:,ii) = max(particle(:,:,:,:,ii),xmin); 
    for m = 1:M
        for i = 1:n
            for j = 1:n
                for nn = 1 : 2*num_particle
                    if d(i,j) > 0
                       x2(:,:,m,i,j,nn) = double(particle(nn,i,j,m,ii)>0.5);%对于优化结果,只取0或者1
                    else
                       x2(:,:,m,i,j,nn) = 0;%对于优化结果,只取0或者1 
                    end
                end
            end  
        end  
    end
    for m = 1:M
        for i = 1:n
            for j = 1:n
                for nn = 1 : 2*num_particle
                    if d(i,j) > 0
                       route(i,j,m,nn)    = particle(nn,i,j,m,ii);
                    else
                       route(i,j,m,nn)    = 0;
                    end
                end
            end  
        end    
    end
    
    
    for nn = 1 : num_particle
        x_tmp      = x2(:,:,:,:,:,nn);
        fit(:,ii)  = fitness(M,n,g,G,C,q,d,p,Z,T,LT,ET,R,r,x_tmp);
    end    
 
    %下面更新 pbest and pbest_value 
    pbest_value(:,ii)=min(pbest_value(:,ii-1),fit(:,ii));
    
    for i=1:num_particle
        if pbest_value(i,ii) == fit(i,ii)   
           pbest(2*i-1:2*i,:,:,:,ii) = particle(2*i-1:2*i,:,:,:,ii);
        else
           pbest(2*i-1:2*i,:,:,:,ii) = pbest(2*i-1:2*i,:,:,:,ii-1);
        end
    end
    
    %*************************
    %下面计算惯性权重
    pmin   = min(fit(:,ii));
    a(ii)  = mean(sum(abs(fit(:,ii)-pmin)));
 
    %下面更新gbest and gbest_value
    [Cs,I]  = min(pbest_value(:,ii));
    
    gbest_value(ii)=min(Cs,gbest_value(ii-1));
    
    for i=1:num_particle
        if gbest_value(ii) == Cs
           gbest(2*i-1:2*i,:,:,:,ii)=pbest(2*I-1:2*I,:,:,:,ii);  
        else
           gbest(2*i-1:2*i,:,:,:,ii)=gbest(2*I-1:2*I,:,:,:,ii-1);
        end
    end
end  
%x2                  = zeros(g,G,M,n,n,2*num_particle);
finals_cost = gbest_value(end);
% save Simulation_Results\result.mat gbest_value itmax
02_009m
相关文章
|
3天前
|
存储 算法 数据处理
公司局域网管理中的哈希表查找优化 C++ 算法探究
在数字化办公环境中,公司局域网管理至关重要。哈希表作为一种高效的数据结构,通过哈希函数将关键值(如IP地址、账号)映射到数组索引,实现快速的插入、删除与查找操作。例如,在员工登录验证和设备信息管理中,哈希表能显著提升效率,避免传统线性查找的低效问题。本文以C++为例,展示了哈希表在局域网管理中的具体应用,包括设备MAC地址与IP分配的存储与查询,并探讨了优化哈希函数和扩容策略,确保网络管理高效准确。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
|
3天前
|
算法 数据安全/隐私保护
基于二次规划优化的OFDM系统PAPR抑制算法的matlab仿真
本程序基于二次规划优化的OFDM系统PAPR抑制算法,旨在降低OFDM信号的高峰均功率比(PAPR),以减少射频放大器的非线性失真并提高电源效率。通过MATLAB2022A仿真验证,核心算法通过对原始OFDM信号进行预编码,最小化最大瞬时功率,同时约束信号重构误差,确保数据完整性。完整程序运行后无水印,展示优化后的PAPR性能提升效果。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
1天前
|
资源调度 算法 数据可视化
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
|
6天前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
|
20天前
|
算法
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
7天前
|
算法 数据挖掘 数据安全/隐私保护
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
|
5天前
|
算法 数据安全/隐私保护
基于Adaboost的数据分类算法matlab仿真
本程序基于Adaboost算法进行数据分类的Matlab仿真,对比线性与非线性分类效果。使用MATLAB2022A版本运行,展示完整无水印结果。AdaBoost通过迭代训练弱分类器并赋予错分样本更高权重,最终组合成强分类器,显著提升预测准确率。随着弱分类器数量增加,训练误差逐渐减小。核心代码实现详细,适合研究和教学使用。