【从零开始学习深度学习】6.使用torchvision下载与查看图像分类数据集Fashion-MNIST

简介: 【从零开始学习深度学习】6.使用torchvision下载与查看图像分类数据集Fashion-MNIST

图像分类数据集中最常用的是手写数字识别数据集MNIST。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST。


本节我们将使用torchvision包,它是服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision主要由以下几部分构成:


  1. torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
  2. torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
  3. torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
  4. torchvision.utils: 其他的一些有用的方法。


1.1 获取Fashion-MNIST数据集


首先导入本节需要的包或模块。


import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import time
import sys


下面,我们通过torchvision的torchvision.datasets来下载这个数据集。第一次调用时会自动从网上获取数据。我们通过参数train来指定获取训练数据集或测试数据集(testing data set)。测试数据集也叫测试集(testing set),只用来评价模型的表现,并不用来训练模型。


另外我们还指定了参数transform = transforms.ToTensor()使所有数据转换为Tensor,如果不进行转换则返回的是PIL图片。transforms.ToTensor()将尺寸为 (H x W x C) 且数据位于[0, 255]的PIL图片或者数据类型为np.uint8的NumPy数组转换为尺寸为(C x H x W)且数据类型为torch.float32且位于[0.0, 1.0]的Tensor。


注意: 由于像素值为0到255的整数,所以刚好是uint8所能表示的范围,包括transforms.ToTensor()在内的一些关于图片的函数就默认输入的是uint8型,若不是,可能不会报错但可能得不到想要的结果。所以,如果用像素值(0-255整数)表示图片数据,那么一律将其类型设置成uint8,避免不必要的bug。


mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())


上面的mnist_train和mnist_test都是torch.utils.data.Dataset的子类,所以我们可以用len()来获取该数据集的大小,还可以用下标来获取具体的一个样本。训练集中和测试集中的每个类别的图像数分别为6,000和1,000。因为有10个类别,所以训练集和测试集的样本数分别为60,000和10,000。


print(type(mnist_train))
print(len(mnist_train), len(mnist_test))


输出:


<class 'torchvision.datasets.mnist.FashionMNIST'>
60000 10000
• 1


我们可以通过下标来访问任意一个样本:


feature, label = mnist_train[0]
print(feature.shape, label)  # Channel x Height x Width


输出:


torch.Size([1, 28, 28]) tensor(9)


变量feature对应高和宽均为28像素的图像。由于我们使用了transforms.ToTensor(),所以每个像素的数值为[0.0, 1.0]的32位浮点数。需要注意的是,feature的尺寸是 (C x H x W) 的,而不是 (H x W x C)。第一维是通道数,因为数据集中是灰度图像,所以通道数为1。后面两维分别是图像的高和宽。


Fashion-MNIST中一共包括了10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。以下函数可以将数值标签转成相应的文本标签。


def get_fashion_mnist_labels(labels):
    # 将数值标签转成相应的文本标签
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]


下面定义一个可以在一行里画出多张图像和对应标签的函数。


def show_fashion_mnist(images, labels):
    d2l.use_svg_display()
    # 这里的_表示我们忽略(不使用)的变量
    _, figs = plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.view((28, 28)).numpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
    plt.show()


现在,我们看一下训练数据集中前10个样本的图像内容和文本标签。


X, y = [], []
for i in range(10):
    X.append(mnist_train[i][0])
    y.append(mnist_train[i][1])
show_fashion_mnist(X, get_fashion_mnist_labels(y))

80f11d321fa249a3982fb3ee8e2d7e47.png

2.2 读取小批量


我们将在训练数据集上训练模型,并将训练好的模型在测试数据集上评价模型的表现。前面说过,mnist_train是torch.utils.data.Dataset的子类,所以我们可以将其传入torch.utils.data.DataLoader来创建一个读取小批量数据样本的DataLoader实例。


在实践中,数据读取经常是训练的性能瓶颈,特别当模型较简单或者计算硬件性能较高时。PyTorch的DataLoader中一个很方便的功能是允许使用多进程来加速数据读取。这里我们通过参数num_workers来设置4个进程读取数据。


batch_size = 256
if sys.platform.startswith('win'):
    num_workers = 0  # 0表示不用额外的进程来加速读取数据
else:
    num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)


查看读取一遍训练数据需要的时间。

start = time.time()
for X, y in train_iter:
    continue
print('%.2f sec' % (time.time() - start))


输出:


3.36 sec


小结

Fashion-MNIST是一个10类服饰分类数据集,之后章节里将使用它来检验不同算法的表现。

我们将高和宽分别为h hh和w ww像素的图像的形状记为h × w h \times wh×w或(h,w)。

相关文章
|
24天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
81 9
|
1月前
|
机器学习/深度学习 传感器 人工智能
深度学习之自主学习和任务规划
基于深度学习的自主学习和任务规划,是指通过深度学习算法使人工智能(AI)系统能够自主地从环境中学习,并根据特定的目标和任务,规划出有效的解决方案。
55 3
|
1月前
|
机器学习/深度学习 存储 自然语言处理
深度学习之少样本学习
少样本学习(Few-Shot Learning, FSL)是深度学习中的一个重要研究领域,其目标是在只有少量标注样本的情况下,训练出能够很好地泛化到新类别或新任务的模型。
34 2
|
1月前
|
机器学习/深度学习 自然语言处理 计算机视觉
深度学习中的迁移学习技术
【10月更文挑战第11天】 本文探讨了深度学习中的迁移学习技术,并深入分析了其原理、应用场景及实现方法。通过实例解析,展示了迁移学习如何有效提升模型性能和开发效率。同时,文章也讨论了迁移学习面临的挑战及其未来发展方向。
|
24天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
60 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习之复杂推理与逻辑学习
基于深度学习的复杂推理与逻辑学习是当前人工智能领域中的一个前沿研究方向,旨在结合深度学习与传统逻辑推理的优势,使机器能够在处理复杂任务时具备更强的推理能力。
34 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习之生物启发的学习系统
基于深度学习的生物启发学习系统(Biologically Inspired Learning Systems)旨在借鉴生物大脑的结构和学习机制,设计出更高效、更灵活的人工智能系统。
24 0
|
2天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
14 8
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
6天前
|
机器学习/深度学习 数据采集 测试技术
深度学习在图像识别中的应用
本篇文章将探讨深度学习在图像识别中的应用。我们将介绍深度学习的基本原理,以及如何使用深度学习进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习进行图像识别。这篇文章的目的是帮助读者理解深度学习在图像识别中的作用,并学习如何使用深度学习进行图像识别。
下一篇
无影云桌面