28_mysql数据库优化之覆盖索引与索引下推

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 每天进步亿点点
参考来源:

康师傅:https://www.bilibili.com/video/BV1iq4y1u7vj?p=147

爱编程的大李子:https://blog.csdn.net/LXYDSF/article/details/126606855

一、覆盖索引

一个索引包含了满足查询结果的数据就叫做覆盖索引。它包括在查询里的 SELECT、JOIN 和 WHERE 子句用到的所有列(即建索引的字段正好是覆盖查询条件中所涉及的字段)。

简单说就是, 索引列+主键 包含 SELECT 到 FROM 之间查询的列

举例一:

# 删除之前的索引
DROP INDEX idx_age_stuno ON student;

# 创建 age,NAME 两个字段的联合索引
CREATE INDEX idx_age_name ON student (age,NAME);

# 不等号查找 导致索引失效
EXPLAIN SELECT * FROM student WHERE age <> 20;

# 覆盖索引下,上面的语句 不等号没有使索引失效
EXPLAIN SELECT age,NAME FROM student WHERE age <> 20;
注意:前面我们提到如果使用上<>就不会使用上索引了 并不是绝对的。我们讲解的关于 索引失效以及索引优化都是根据效率来决定的。对于二级索引来说:查询时间 = 二级索引计算时间 + 回表查询时间,由于我们使用的是覆盖索引,回表查询时间 = 0,索引优化器考虑到这一点就使用上 二级索引了

举例二:

# LIKE 以 % 开头的模糊查询导致索引失效
EXPLAIN SELECT * FROM student WHERE NAME LIKE '%abc';

# 由于上面创建的索引 idx_age_name 中包含了,id, age, name 三个字段,所以下面使用上了索引
EXPLAIN SELECT id,age FROM student WHERE NAME LIKE '%abc';

覆盖索引的利弊

  • 好处1:避免Innodb表进行索引的二次查询(回表)

    对于 Innodb 来说,二级索引在叶子节点中所保存的是行的主键信息,如果是用二级索引查询数据,在查找到相应的键值后,还需通过主键进行二次查询才能获取我们真实所需要的数据。

    在覆盖索引中,二级索引的键值中可以获取所要的数据,避免了对主键的二次查询,减少了 IO 操作,提升了查询效率。

  • 好处2:可以把随机 IO 变成顺序 IO 加快查询效率

    由于覆盖索引是按键值的顺序存储的,对于 I/O 密集型的范围查找来说,对比随机从磁盘读取每一行的数据 I/O 要少的多,因此利用覆盖索引在访问时也可以把磁盘的随机读取的 I/O 转变成索引查找的顺序 I/O。

    由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

  • 弊端

    索引字段的维护 总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。

使用 前缀索引就用不上覆盖索引对查询性能的优化了,前缀索引中的数据并不完整,需要回表查询完整的数据。这也是你在选择是否使用前缀索引时需要考虑的一个因素。

二、索引条件下推

Index Condition Pushdown(ICP) 是 MySQL 5.6 中新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。ICP 可以减少存储引擎访问基表(回表)的次数以及 MySQL 服务器访问存储引擎的次数

类似覆盖索引, 索引条件下推使得类似于 % 开头的模糊查询 索引不失效。索引中包含这个字段,但是没有使用到这个字段的索引(比如‘%a%’),却可以使用这个字段在索引中进行条件过滤,从而 减少回表的记录条数,这就是索引条件下推带来的性能优化。

ICP 的开启、关闭(默认开启)

默认情况下启用索引条件下推。可以通过设置系统变量 optimizer_switch 控制 index_condition_pushdown

#关闭索引下推
SET optimizer_switch='index_condition_pushdown=off';

#打开索引下推
SET optimizer_switch='index_condition_pushdown=on';

当使用索引条件下推时,EXPLAIN 语句输出结果中 Extra 列内容显示为 Using index condition

ICP 的使用条件

  1. 只能用于二级索引(secondary index)
  2. explain 显示的执行计划中 type 值(join 类型)为 range 、 ref 、 eq_ref 或者 ref_or_null 。
  3. 并非全部 where 条件都可以用 ICP 筛选,如果 where 条件的字段不在索引列中,还是要读取整表的记录到 server 端做 where 过滤。
  4. ICP 可以用于 MyISAM 和 InnnoDB 存储引擎
  5. MySQL 5.6 版本的不支持分区表的 ICP 功能,5.7 版本的开始支持。
  6. 当 SQL 使用覆盖索引时,不支持 ICP 优化方法。
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
7天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
6天前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
5天前
|
数据库 索引
数据库索引
数据库索引 1、索引:建立在表一列或多列的辅助对象,目的是加快访问表的数据。 2、索引的优点: (1)、创建唯一性索引,可以确保数据的唯一性; (2)、大大加快数据检索速度; (3)、加速表与表之间的连接; (4)、在查询过程中,使用优化隐藏器,提高系统性能。 3、索引的缺点: (1)、创建和维护索引需要耗费时间,随数据量增加而增加; (2)、索引占用物理空间; (3)、对表的数据进行增删改时,索引需要动态维护,降低了数据的维护速度。
15 2
|
7天前
|
存储 SQL 数据库
深入浅出后端开发之数据库优化实战
【10月更文挑战第35天】在软件开发的世界里,数据库性能直接关系到应用的响应速度和用户体验。本文将带你了解如何通过合理的索引设计、查询优化以及恰当的数据存储策略来提升数据库性能。我们将一起探索这些技巧背后的原理,并通过实际案例感受优化带来的显著效果。
25 4
|
9天前
|
SQL druid 数据库
如何进行数据库连接池的参数优化?
数据库连接池参数优化包括:1) 确定合适的初始连接数,考虑数据库规模和应用需求;2) 调整最大连接数,依据并发量和资源状况;3) 设置最小空闲连接数,平衡资源利用和响应速度;4) 优化连接超时时间,确保系统响应和资源利用合理;5) 配置连接有效性检测,定期检查连接状态;6) 调整空闲连接回收时间,适应访问模式并配合数据库超时设置。
|
11天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
37 3
|
13天前
|
SQL 缓存 监控
数据库优化
【10月更文挑战第29天】数据库优化
26 1
|
14天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
37 1
|
15天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
77 1
|
9天前
|
存储 关系型数据库 数据库
Postgres数据库BRIN索引介绍
BRIN索引是PostgreSQL提供的一种高效、轻量级的索引类型,特别适用于大规模、顺序数据的范围查询。通过存储数据块的摘要信息,BRIN索引在降低存储和维护成本的同时,提供了良好的查询性能。然而,其适用场景有限,不适合随机数据分布或频繁更新的场景。在选择索引类型时,需根据数据特性和查询需求进行权衡。希望本文对你理解和使用PostgreSQL的BRIN索引有所帮助。
16 0