【数据结构基础】之图的介绍,生动形象,通俗易懂,算法入门必看(上)

简介: 【数据结构基础】之图的介绍,生动形象,通俗易懂,算法入门必看(上)

一、图的基本概念


1️⃣图的定义


定义: 图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的;其中,点通常被成为"顶点(vertex)“,而点与点之间的连线则被成为"边或弧”(edege)。通常记为,G=(V,E)。


2️⃣图的种类


根据边是否有方向,将图可以划分为:无向图 和有向图。


🍀(1)无向图


f7690e3d20b5425b8b171c280040c16e.png


上面的图G0是无向图,无向图的所有的边都是不区分方向的。G0=(V1,{E1})。其中:


(1)V1={A,B,C,D,E,F}。 V1表示由"A,B,C,D,E,F"几个顶点组成的集合。

(2)E1={(A,B),(A,C),(B,C),(B,E),(B,F),(C,F), (C,D),(E,F),(C,E)}。E1是由边(A,B),边(A,C)…等组成的集合。其中,(A,C)表示由顶点A和顶点C连接成的边。


🍀(2)有向图


c8054d7d871b45dcab942627f0f361f7.png


上面的图G2是有向图。和无向图不同,有向图的所有的边都是有方向的! G2=(V2,{A2})。其中:


(1)V2={A,C,B,F,D,E,G}。 V2表示由"A,B,C,D,E,F,G"几个顶点组成的集合。

(2)A2={<A,B>,<B,C>,<B,F>,<B,E>,<C,E>,<E,D>,<D,C>,<E,B>,<F,G>}。E1是由矢量<A,B>,矢量<B,C>…等等组成的集合。其中,矢量<A,B)表示由"顶点A"指向"顶点C"的有向边。


3️⃣邻接点和度


🍀(1)邻接点


(1)一条边上的两个顶点叫做邻接点。 例如,上面无向图G0中的顶点A和顶点C就是邻接点。

(2)在有向图中,除了邻接点之外;还有"入边"和"出边"的概念。顶点的入边,是指以该顶点为终点的边。而顶点的出边,则是指以该顶点为起点的边。例如,上面有向图G2中的B和E是邻接点;<B,E>是B的出边,还是E的入边。


🍀(2)度


(1)在无向图中,某个顶点的度是邻接到该顶点的边(或弧)的数目。 例如,上面无向图G0中顶点A的度是2。

(2)在有向图中,度还有"入度"和"出度"之分。某个顶点的入度,是指以该顶点为终点的边的数目。而顶点的出度,则是指以该顶点为起点的边的数目。 顶点的度=入度+出度。例如,上面有向图G2中,顶点B的入度是2,出度是3;顶点B的度=2+3=5。


4️⃣路径和回路


路径: 如果顶点(Vm)到顶点(Vn)之间存在一个顶点序列。则表示Vm到Vn是一条路径。

路径长度: 路径中"边的数量"。

简单路径: 若一条路径上顶点不重复出现,则是简单路径。

回路: 若路径的第一个顶点和最后一个顶点相同,则是回路。

简单回路: 第一个顶点和最后一个顶点相同,其它各顶点都不重复的回路则是简单回路。


5️⃣连通图和连通分量


  • 连通图: 对无向图而言,任意两个顶点之间都存在一条无向路径,则称该无向图为连通图。 对有向图而言,若图中任意两个顶点之间都存在一条有向路径,则称该有向图为强连通图。
  • 连通分量: 非连通图中的各个连通子图称为该图的连通分量。


6️⃣权


在学习"哈夫曼树"的时候,了解过"权"的概念。图中权的概念与此类似。


be25db80b7a845f0a64f3b512635aee9.png



上面就是一个带权的图。


二、图的存储结构


图的存储结构,常用的是"邻接矩阵"和"邻接表"。


1️⃣邻接矩阵


邻接矩阵是指用矩阵来表示图。它是采用矩阵来描述图中顶点之间的关系(及弧或边的权)。

假设图中顶点数为n,则邻接矩阵定义为:

d7bbfe59ff8948db80b2fb15c7229ab3.png


下面通过示意图来进行解释。


24869d1bc89a40d7b2c990aba3ff3d63.png


图中的G1是无向图和它对应的邻接矩阵。

91c9c4115214488fb37c57c10b0c0833.png

图中的G2是无向图和它对应的邻接矩阵。


通常采用两个数组来实现邻接矩阵:一个一维数组用来保存顶点信息,一个二维数组来用保存边的信息。


邻接矩阵的缺点就是比较耗费空间。


2️⃣邻接表


邻接表是图的一种链式存储表示方法。它是改进后的"邻接矩阵",它的缺点是不方便判断两个顶点之间是否有边,但是相对邻接矩阵来说更省空间。

0c93e63fb7b2425bb5e906ec89844ce4.png

图中的G1是无向图和它对应的邻接矩阵。

209567ba31344e8fb65916fd0ef5ddfb.png


图中的G2是无向图和它对应的邻接矩阵。


三、图的遍历


对于图而言,我们常用的遍历方式有bfs和dfs两种:


  • bfs:广度优先搜索算法,英文Breadth First Search。广度优先搜索会优先访问当前顶点的所有邻接结点。
  • dfs:深度优先搜索算法,英文Depth First Search。深度优先搜索会优先顺延访问当前节点分支进行访问,直到不能深入,每个节点只访问一次。


1️⃣广度优先搜索


🍀(1)广度优先搜索介绍


广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2…的顶点。


🍀(2)广度优先搜索图解


无向图的广度优先搜索:


7a7d171d6f9745998594ac00db7d2982.png


第1步:访问A。

第2步:依次访问C,D,F。在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。

第3步:依次访问B,G。在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。

第4步:访问E。 在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

因此访问顺序是:A -> C -> D -> F -> B -> G -> E


有向图的广度优先搜索:


eb84145591af4b3eb6ef48006b9a7bc1.png


第1步:访问A。

第2步:访问B。

第3步:依次访问C,E,F。在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。

第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A -> B -> C -> E -> F -> D -> G


🍀(3)广度优先搜索代码实现

public class Graph {
    /**
     * 定义顶点的抽象
     * @param <T>
     */
    public static class Vertex<T>{
        // 要保存的数据
        private T t;
        // 其他和我管理的邻接节点
        private List<Vertex<T>> neighborList;
        private boolean visited = false;
        public Vertex(T t) {
            this.t = t;
        }
    }
    // bfs 广度优先遍历算法
    public static <T> void bfs(Vertex<T> vertex){
        // 1、定义一个临时存储的空间,使用队列
        Queue<Vertex<T>> queue = new ArrayBlockingQueue<>(8);
        // 2、增加一个用来保存已经遍历过的数据的集合
        HashSet<Vertex<T>> mome = new HashSet<>(8);
        // 3、将第一个顶点放入队列
        queue.add(vertex);
        while (!queue.isEmpty()){
            // 将第一个元素拿出来
            Vertex<T> temp = queue.poll();
            // 进行操作
            if (!mome.contains(temp)){
                System.out.println(temp.t);
                mome.add(temp);
            }
            // 将他所有的邻接节点放进去
            if(temp.neighborList != null){
                queue.addAll(temp.neighborList);
            }
        }
    }
}


相关文章
|
14天前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
76 29
|
14天前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
72 25
|
14天前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
58 23
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
49 2
|
1天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。