【数据结构基础】之图的介绍,生动形象,通俗易懂,算法入门必看(上)

简介: 【数据结构基础】之图的介绍,生动形象,通俗易懂,算法入门必看(上)

一、图的基本概念


1️⃣图的定义


定义: 图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的;其中,点通常被成为"顶点(vertex)“,而点与点之间的连线则被成为"边或弧”(edege)。通常记为,G=(V,E)。


2️⃣图的种类


根据边是否有方向,将图可以划分为:无向图 和有向图。


🍀(1)无向图


f7690e3d20b5425b8b171c280040c16e.png


上面的图G0是无向图,无向图的所有的边都是不区分方向的。G0=(V1,{E1})。其中:


(1)V1={A,B,C,D,E,F}。 V1表示由"A,B,C,D,E,F"几个顶点组成的集合。

(2)E1={(A,B),(A,C),(B,C),(B,E),(B,F),(C,F), (C,D),(E,F),(C,E)}。E1是由边(A,B),边(A,C)…等组成的集合。其中,(A,C)表示由顶点A和顶点C连接成的边。


🍀(2)有向图


c8054d7d871b45dcab942627f0f361f7.png


上面的图G2是有向图。和无向图不同,有向图的所有的边都是有方向的! G2=(V2,{A2})。其中:


(1)V2={A,C,B,F,D,E,G}。 V2表示由"A,B,C,D,E,F,G"几个顶点组成的集合。

(2)A2={<A,B>,<B,C>,<B,F>,<B,E>,<C,E>,<E,D>,<D,C>,<E,B>,<F,G>}。E1是由矢量<A,B>,矢量<B,C>…等等组成的集合。其中,矢量<A,B)表示由"顶点A"指向"顶点C"的有向边。


3️⃣邻接点和度


🍀(1)邻接点


(1)一条边上的两个顶点叫做邻接点。 例如,上面无向图G0中的顶点A和顶点C就是邻接点。

(2)在有向图中,除了邻接点之外;还有"入边"和"出边"的概念。顶点的入边,是指以该顶点为终点的边。而顶点的出边,则是指以该顶点为起点的边。例如,上面有向图G2中的B和E是邻接点;<B,E>是B的出边,还是E的入边。


🍀(2)度


(1)在无向图中,某个顶点的度是邻接到该顶点的边(或弧)的数目。 例如,上面无向图G0中顶点A的度是2。

(2)在有向图中,度还有"入度"和"出度"之分。某个顶点的入度,是指以该顶点为终点的边的数目。而顶点的出度,则是指以该顶点为起点的边的数目。 顶点的度=入度+出度。例如,上面有向图G2中,顶点B的入度是2,出度是3;顶点B的度=2+3=5。


4️⃣路径和回路


路径: 如果顶点(Vm)到顶点(Vn)之间存在一个顶点序列。则表示Vm到Vn是一条路径。

路径长度: 路径中"边的数量"。

简单路径: 若一条路径上顶点不重复出现,则是简单路径。

回路: 若路径的第一个顶点和最后一个顶点相同,则是回路。

简单回路: 第一个顶点和最后一个顶点相同,其它各顶点都不重复的回路则是简单回路。


5️⃣连通图和连通分量


  • 连通图: 对无向图而言,任意两个顶点之间都存在一条无向路径,则称该无向图为连通图。 对有向图而言,若图中任意两个顶点之间都存在一条有向路径,则称该有向图为强连通图。
  • 连通分量: 非连通图中的各个连通子图称为该图的连通分量。


6️⃣权


在学习"哈夫曼树"的时候,了解过"权"的概念。图中权的概念与此类似。


be25db80b7a845f0a64f3b512635aee9.png



上面就是一个带权的图。


二、图的存储结构


图的存储结构,常用的是"邻接矩阵"和"邻接表"。


1️⃣邻接矩阵


邻接矩阵是指用矩阵来表示图。它是采用矩阵来描述图中顶点之间的关系(及弧或边的权)。

假设图中顶点数为n,则邻接矩阵定义为:

d7bbfe59ff8948db80b2fb15c7229ab3.png


下面通过示意图来进行解释。


24869d1bc89a40d7b2c990aba3ff3d63.png


图中的G1是无向图和它对应的邻接矩阵。

91c9c4115214488fb37c57c10b0c0833.png

图中的G2是无向图和它对应的邻接矩阵。


通常采用两个数组来实现邻接矩阵:一个一维数组用来保存顶点信息,一个二维数组来用保存边的信息。


邻接矩阵的缺点就是比较耗费空间。


2️⃣邻接表


邻接表是图的一种链式存储表示方法。它是改进后的"邻接矩阵",它的缺点是不方便判断两个顶点之间是否有边,但是相对邻接矩阵来说更省空间。

0c93e63fb7b2425bb5e906ec89844ce4.png

图中的G1是无向图和它对应的邻接矩阵。

209567ba31344e8fb65916fd0ef5ddfb.png


图中的G2是无向图和它对应的邻接矩阵。


三、图的遍历


对于图而言,我们常用的遍历方式有bfs和dfs两种:


  • bfs:广度优先搜索算法,英文Breadth First Search。广度优先搜索会优先访问当前顶点的所有邻接结点。
  • dfs:深度优先搜索算法,英文Depth First Search。深度优先搜索会优先顺延访问当前节点分支进行访问,直到不能深入,每个节点只访问一次。


1️⃣广度优先搜索


🍀(1)广度优先搜索介绍


广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2…的顶点。


🍀(2)广度优先搜索图解


无向图的广度优先搜索:


7a7d171d6f9745998594ac00db7d2982.png


第1步:访问A。

第2步:依次访问C,D,F。在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。

第3步:依次访问B,G。在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。

第4步:访问E。 在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

因此访问顺序是:A -> C -> D -> F -> B -> G -> E


有向图的广度优先搜索:


eb84145591af4b3eb6ef48006b9a7bc1.png


第1步:访问A。

第2步:访问B。

第3步:依次访问C,E,F。在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。

第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A -> B -> C -> E -> F -> D -> G


🍀(3)广度优先搜索代码实现

public class Graph {
    /**
     * 定义顶点的抽象
     * @param <T>
     */
    public static class Vertex<T>{
        // 要保存的数据
        private T t;
        // 其他和我管理的邻接节点
        private List<Vertex<T>> neighborList;
        private boolean visited = false;
        public Vertex(T t) {
            this.t = t;
        }
    }
    // bfs 广度优先遍历算法
    public static <T> void bfs(Vertex<T> vertex){
        // 1、定义一个临时存储的空间,使用队列
        Queue<Vertex<T>> queue = new ArrayBlockingQueue<>(8);
        // 2、增加一个用来保存已经遍历过的数据的集合
        HashSet<Vertex<T>> mome = new HashSet<>(8);
        // 3、将第一个顶点放入队列
        queue.add(vertex);
        while (!queue.isEmpty()){
            // 将第一个元素拿出来
            Vertex<T> temp = queue.poll();
            // 进行操作
            if (!mome.contains(temp)){
                System.out.println(temp.t);
                mome.add(temp);
            }
            // 将他所有的邻接节点放进去
            if(temp.neighborList != null){
                queue.addAll(temp.neighborList);
            }
        }
    }
}


相关文章
|
3月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
76 1
|
3月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
86 0
|
7月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
195 10
 算法系列之数据结构-二叉树
|
7月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
159 3
 算法系列之数据结构-Huffman树
|
7月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
206 22
|
7月前
|
机器学习/深度学习 算法 机器人
强化学习:时间差分(TD)(SARSA算法和Q-Learning算法)(看不懂算我输专栏)——手把手教你入门强化学习(六)
本文介绍了时间差分法(TD)中的两种经典算法:SARSA和Q-Learning。二者均为无模型强化学习方法,通过与环境交互估算动作价值函数。SARSA是On-Policy算法,采用ε-greedy策略进行动作选择和评估;而Q-Learning为Off-Policy算法,评估时选取下一状态中估值最大的动作。相比动态规划和蒙特卡洛方法,TD算法结合了自举更新与样本更新的优势,实现边行动边学习。文章通过生动的例子解释了两者的差异,并提供了伪代码帮助理解。
434 2
|
8月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
203 30
|
8月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
318 25
|
10天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
12天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)

热门文章

最新文章