云原生数据仓库 AnalyticDB MySQL 版 _解析与实践3|学习笔记(三)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 云原生数据仓库 AnalyticDB MySQL 版 _解析与实践3

开发者学堂课程【数据仓库 ACP 认证课程:快速学习云原生数据仓库 AnalyticDB MySQL 版 _解析与实践3】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/928/detail/14625


云原生数据仓库 AnalyticDB MySQL 版_解析与实践3


四、操作演示——创建数据仓库并完成数据同步

把RDS MySQL 中一张表的数据导入进 ADB MySQL 中,实现数据导入。

过程分为6个步骤:

1. 在 ADB MySQL 创建高权限账号

2. 创建数据库

3创建 RDS MySQL 外表

4.创建 AnalyticDB MySQL 表

5.转储 RDS MySQL 的数据到 AnalyticDB MySQL 中

6.导入数据验证

实验以 ADS 官方文档进行操作。通过已经建好的 ADS MySQL 集群以及 RDS 实例,将数据从 RDS 中导入进 ADS MySQL 中。RDS MySQL 实例需与 AnalyticDB MySQL 集群在同一个 VPC 下。

image.png

为了保证 AnalyticDB MySQL 能访问 RDS,需要将 RDS 设置白名单。默认白名单为1.27.0.1,表示禁止所有地址访问。复制专有网络的地址后修改 RDS 白名单

image.png

image.png

RDS 数据库创建账号登录 DMS。使用 root 创建数据库账号,获取最高权限。设置密码。

image.png

访问数据库在数据库连接中获取地址,获取地址后创建外部表可以用到。

此时需要创建两个表,一个是 adb 数据局的表,一个是外部表,通过外部表来实现数据的导入导出。首先需要登录到集群当中,创建账号,创建一个最高权限的账号,名称为 root,同时设置密码。

image.png

此时对于 adb mysql 集群来说,如果想要通过外表的方式导入数据,需要打开网络,然后此时可以连接集群,在集群中创建对应数据库及 web 的映射表。

image.png

默认数据库有两个,此时需要创建一个自己的数据库,命名为 adb.demo,此时可以访问它,在 adb 当中再创建一张外部表,创建语句为:

CREATE TABLE IF NOT EXISTS goods_external_table (

goods_id bigint(20) NOT NULL,

price double NOT NULL, class bigint(20) NOT NULL,

name varchar(32) NOT NULL,

update_time timestamp,

PRIMARY KEY (goods_id)

)

ENGINE='mysql' TABLE_PROPERTIES='{

"url":"jdbc:mysql://rm-bp1925ru5x6pzt2m3.mysql.rds.aliyuncs.com.3306/test_adb",

"tablename":"goods",

"username":"root",

"password":"zhou_123456"

}';

此时已经完成了外部表的创建,此时需要在adb mysql当中创建自己的表,代码如下:

CREATE TABLE IF NOT EXISTS mysql_import_test (

goods_id bigint(20) NOT NULL,

price double NOT NULL,

class bigint(20) NOT NULL,

name varchar(32) NOT NULL,

update_time timestamp, PRIMARY KEY (goods_id)

)

DISTRIBUTED BY HASH(goods_id);

此时有了外部表和一个 adb 的表,此时可以通过 insert 来完成数据的导入导出,此时执行代码如下:

Insert inte mysql_import_test select * fromgood_external_table;//导入操作

此时执行,可以看到执行一条语句成功,此时打开表,可以看到已经显示。

image.png

此时完成了一次数据导入的过程。把 rds mysql 的数据导入到了 adb mysql 当中。

此时案例演示结束。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
6天前
|
存储 Cloud Native 块存储
EBS深度解析:云原生时代企业级块存储
企业上云的策略,从 Cloud-Hosting 转向 Serverless 架构。块存储作为企业应用上云的核心存储产品,将通过 Serverless 化来加速新的计算范式全面落地。在本话题中,我们将会介绍阿里云块存储企业级能力的创新,深入解析背后的技术细节,分享对未来趋势的判断。
|
6天前
|
监控 关系型数据库 MySQL
MySQL自增ID耗尽应对策略:技术解决方案全解析
在数据库管理中,MySQL的自增ID(AUTO_INCREMENT)属性为表中的每一行提供了一个唯一的标识符。然而,当自增ID达到其最大值时,如何处理这一情况成为了数据库管理员和开发者必须面对的问题。本文将探讨MySQL自增ID耗尽的原因、影响以及有效的应对策略。
21 3
|
8天前
|
Kubernetes Cloud Native 云计算
云原生技术深度解析:重塑企业IT架构的未来####
本文深入探讨了云原生技术的核心理念、关键技术组件及其对企业IT架构转型的深远影响。通过剖析Kubernetes、微服务、容器化等核心技术,本文揭示了云原生如何提升应用的灵活性、可扩展性和可维护性,助力企业在数字化转型中保持领先地位。 ####
|
7天前
|
存储 关系型数据库 MySQL
MySQL 字段类型深度解析:VARCHAR(50) 与 VARCHAR(500) 的差异
在MySQL数据库中,`VARCHAR`类型是一种非常灵活的字符串存储类型,它允许存储可变长度的字符串。然而,`VARCHAR(50)`和`VARCHAR(500)`之间的差异不仅仅是长度的不同,它们在存储效率、性能和使用场景上也有所不同。本文将深入探讨这两种字段类型的区别及其对数据库设计的影响。
17 2
|
9天前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
11天前
|
存储 关系型数据库 MySQL
PHP与MySQL动态网站开发深度解析####
本文作为技术性文章,深入探讨了PHP与MySQL结合在动态网站开发中的应用实践,从环境搭建到具体案例实现,旨在为开发者提供一套详尽的实战指南。不同于常规摘要仅概述内容,本文将以“手把手”的教学方式,引导读者逐步构建一个功能完备的动态网站,涵盖前端用户界面设计、后端逻辑处理及数据库高效管理等关键环节,确保读者能够全面掌握PHP与MySQL在动态网站开发中的精髓。 ####
|
14天前
|
Kubernetes Cloud Native 调度
云原生批量任务编排引擎Argo Workflows发布3.6,一文解析关键新特性
Argo Workflows是CNCF毕业项目,最受欢迎的云原生工作流引擎,专为Kubernetes上编排批量任务而设计,本文主要对最新发布的Argo Workflows 3.6版本的关键新特性做一个深入的解析。
|
16天前
|
监控 Cloud Native 持续交付
云原生技术深度解析:重塑现代应用开发与部署范式####
本文深入探讨了云原生技术的核心概念、关键技术组件及其在现代软件开发中的重要性。通过剖析容器化、微服务架构、持续集成/持续部署(CI/CD)等关键技术,本文旨在揭示云原生技术如何促进应用的敏捷性、可扩展性和高可用性,进而推动企业数字化转型进程。不同于传统摘要仅概述内容要点,本部分将融入具体案例分析,直观展示云原生技术在实际应用中的显著成效与挑战应对策略,为读者提供更加丰富、立体的理解视角。 ####
|
19天前
|
存储 关系型数据库 MySQL
MySQL MVCC深度解析:掌握并发控制的艺术
【10月更文挑战第23天】 在数据库领域,MVCC(Multi-Version Concurrency Control,多版本并发控制)是一种重要的并发控制机制,它允许多个事务并发执行而不产生冲突。MySQL作为广泛使用的数据库系统,其InnoDB存储引擎就采用了MVCC来处理事务。本文将深入探讨MySQL中的MVCC机制,帮助你在面试中自信应对相关问题。
56 3
|
19天前
|
缓存 关系型数据库 MySQL
MySQL执行计划深度解析:如何做出最优选择
【10月更文挑战第23天】 在数据库查询性能优化中,执行计划的选择至关重要。MySQL通过查询优化器来生成执行计划,但有时不同的执行计划会导致性能差异。理解如何选择合适的执行计划,以及为什么某些计划更优,对于数据库管理员和开发者来说是一项必备技能。
28 2

热门文章

最新文章

推荐镜像

更多