《R语言数据分析与挖掘实战》——第2章 R语言简介 2.1 R安装

简介:

本节书摘来自华章计算机《R语言数据分析与挖掘实战》一书中的第2章,第2.1节,作者 张良均,云伟标,王路,刘晓勇,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

第2章

R语言简介

R语言是一种为统计计算和图形显示而设计的语言环境,是贝尔实验室(Bell Laboratory)的Rick Becker、John Chambers和Allan Wilks开发的S语言的一种实现,提供了一系列统计和图形显示工具。它是一套开源的数据分析解决方案,由一个庞大且活跃的全球性研究型社区维护。它具有下列优势:

1)作为一个免费的统计软件,R可运行于多种平台之上,包括Windows、UNIX、MacOS和Linux。

2)R可以轻松地从各种类型的数据源导入数据,包括文本文件、数据库管理系统、统计软件,乃至专门的数据仓库。它同样可以将数据输出并写入到这些系统中。

3)具有较高的开放性,R不仅提供功能丰富的内置函数供用户调用,也允许用户编写自定义函数来扩充功能。

4)R拥有顶尖水准的制图功能。如果希望复杂数据可视化,那么R拥有最全面且最强大的一系列可用功能。

R是一个体系庞大的应用软件,主要包括核心的R标准包和各专业领域的其他包。R在数据分析、数据挖掘领域具有特别优势,本书针对数据分析和挖掘相关的内容采用原理加实战的方式对R相关函数进行介绍。本章主要对R软件的安装,一些数据分析和挖掘相关的包,以及常用函数的使用进行简单介绍。后续的原理章节中,首先介绍数据挖掘分析的相关原理,然后针对每个原理选取R相关函数进行实战演示,使读者不仅对数据挖掘相关原理有比较清晰的认识,同时可以使用本书提供的R相关实例来切实地感受相关数据挖掘原理的精髓。

2.1 R安装

本书使用的R版本为R 3.2.0。根据操作系统不同,可选择安装64位或32位版本。安装时直接运行下载的R-3.2.0-win.exe。R可以在其主页(http://www.r-project.org/ )上的R综合资料网(Comprehensive R Archive Network,CRAN)获得。Linux、Mac OS X和Windows都有相应编译好的二进制版本,根据你所选择平台的安装说明进行安装即可。

安装好R后,点击安装目录中bin目录下的Rgui.exe启动R,打开如图2-1所示的界面。

screenshot

为了方便使用R,可使用免费的图形界面编辑器RStudio,可http://www.rstudio.com/products/rstudio/download/ 从中下载,请根据本机操作系统选择系统支持版本自行下载安装。安装RStudio后,可以选择从安装目录或者“开始”菜单栏中启动。

相关文章
|
11天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
53 5
|
2月前
|
数据可视化 数据挖掘 Linux
震撼发布!Python数据分析师必学,Matplotlib与Seaborn数据可视化实战全攻略!
在数据科学领域,数据可视化是连接数据与洞察的桥梁,能让复杂的关系变得直观。本文通过实战案例,介绍Python数据分析师必备的Matplotlib与Seaborn两大可视化工具。首先,通过Matplotlib绘制基本折线图;接着,使用Seaborn绘制统计分布图;最后,结合两者在同一图表中展示数据分布与趋势,帮助你提升数据可视化技能,更好地讲述数据故事。
48 1
|
2月前
|
数据挖掘 PyTorch TensorFlow
|
1月前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
77 0
|
1月前
|
SQL 数据采集 数据可视化
深入 Python 数据分析:高级技术与实战应用
本文系统地介绍了Python在高级数据分析中的应用,涵盖数据读取、预处理、探索及可视化等关键环节,并详细展示了聚类分析、PCA、时间序列分析等高级技术。通过实际案例,帮助读者掌握解决复杂问题的方法,提升数据分析技能。使用pandas、matplotlib、seaborn及sklearn等库,提供了丰富的代码示例,便于实践操作。
154 64
|
14天前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
35 2
|
14天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
20 2
|
1月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
38 1
|
2月前
|
数据挖掘 Python
Pandas实战(1):电商购物用户行为数据分析
Pandas实战(1):电商购物用户行为数据分析
86 1
|
2月前
|
数据挖掘 Python
Pandas实战(3):电商购物用户行为数据分析
Pandas实战(3):电商购物用户行为数据分析
101 1

热门文章

最新文章

下一篇
无影云桌面