开发者学堂课程【人工智能必备基础:概率论与数理统计:T 检验基本原理 】学习笔记,与课程紧密联系,让用户快速学习知识。
课程地址:https://developer.aliyun.com/learning/course/545/detail/7447
T 检验基本原理
内容介绍
一、 T 检验的三种形式
二、 单个样本 t 检验
三、 实例
四、 配对样本均数 t 检验
一、T 检验:
根据研究设计,t 检验有三种形式:
1.单个样本的检验:
用来比较一组数据的平均值和一个数值有无差异。例如,你选取了 5 个人,测定了他们的身高,要看这五个人的身高平均值是否高于、低于还是等于 1.70 m, 就需要用这个检验方法。
2.配对样本均数 t 检验(非独立两样本均数 t 检验)
用来看一组样本在处理前后的平均值有无差异。比如,你选取了 5 个人,分别在饭前和饭后测量了他们的体重,想检测吃饭对他们的体重有无影响,就需要用这个 t 检验。
3.两个独立样本均数 t 检验
用来看两组数据的平均值有无差异。比如,你选取了 5 男 5 女,想看男女之间身高有无差异,这样,男的一组,女的一组,这两个组之间的身高平均值的大小比较可用这种方法。
二、单个样本 t 检验
又称单样本均数 t 检验( one sample test ),适用于样本均数与已知总体均数 μ0 的比较,目的是检验样本均数所代表的总体均数是 μ 否与已知总体均数 μ0 有差别。
已知总体均数 μ0 一般为标准值、理论值或经大量观察得到的较稳定的指标值。
应用条件。总体标准 a 未知的小样
本资料,且服从正态分布
三、实例:
临界值表:http://www.docin.com/p-1173562569.html
以往通过大规模调查已知某地新生儿出生体重为 3.30 kg .从该地难产儿中随机抽收35 名新生儿,平均出生体重为 3.42 kg ,标准差为 0.40 kg ,问该地难产儿出生体重是否与一般新生儿体重不同?
建立检验假设,确定检验水准
H0: μ=μ0
H1: μ≠ μ0
α=0.05
●计算检验统计量
强调自由度,自由度表示在样本中,可以自由变化的个数。
现样本中已取 35 个,已知均值,假设前 34 个人都已定下并可随机取,第 35 个就不可以随机选,为保证均值不变,第 35 个人一定是固定值的。
本例自由度 v=n-1=35-1=34,查表得得 t0.05/2,34=2.032。因为 t< t0.05/2.34. 故 P>0.05. 按 α=0.05 水准,不拒绝 H0, 差别无统计学意义,尚不能认为该地难产儿与一般新生儿平均出生体重不同。
四、配对样本均数t检验:
简称配对 t 检验( paired t test ),又称非独立两样本均数 t 检验,适用于配对设计计量资料均数的比较。
配对设计( paired design )是将受试对象按某些特征相近的原则配成对子,每对中的两个个体随机地给予两种处理
配对样本均数 t 检验原理:关注的是差异值。
配对设计的资料具有对子内数据一 一 对应的特征,研究者应关心是对子的效应差值而不是各自的效应值。
进行配对 t 检验时,首选应计算各对数据间的差值 d,将 d 作为变量计算均数。
配对样本 t 检验的基本原理是假设两种处理的效应相同,理论上差值 d 的总体均数 μd 为 0, 现有的不等于 0 差值样本均数可以来自 μd= 0 的总体,也可以来 ud≠0 的总体。
可将该检验理解为差值样本均数与已知总体均数 pd (μd = 0) 比较的单样本检验,其检验统计量为: