算法入门基础

简介: 算法入门基础

排序分类:

  • 内部排序:把数据加载到内存中进行排序,适用于数据量小的情况。
  • 外部排序:借助外部的文件等,数据量大,无法加载到内存。
  • 常见分类如图:

算法复杂度

算法复杂度分为时间复杂度和空间复杂度。其作用: 时间复杂度时间复杂度是指执行算法所需要的计算工作量;而空间复杂度是指执行这个算法所需要的内存空间。算法的复杂性体运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间,即寄存器资源,因此复杂度分为时间和空间复杂度。

空间复杂度:

描述一个算法所需要的空间大小,即占用的内部内存,或者外部的内存大小,目前的设备性能各方面发展较快,空间复杂度已经不是影响程序性能的主要因素。

时间复杂度:

  • 概述:
    时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。
  • 时间频度
    一个语句执行次数称为语句频度或时间频度,记为T(n)。算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。
  • 时间复杂度:
    一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f (n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度
    举个栗子:
int sum = 0;
int b = 100;
for(int i = 0; i<= b;i++){
    sum += i;
}
//  T(n) = n+1 = 100+1 
 
sum = (1+b)*b/2 //同样也可以计算出结果,但是T(n) = 1
  • 简而言之,在T(n)=O(f(n))中,当n趋近无穷大时,有 T(n)/f(n) = c,极限值c是一个不为0 的常数,就叫 f(n) 是T(n)的同量级函数,若求得 f(n) = n ,则O(f(n)) =O(n).
  • 各时间复杂度增长曲线:
  • 各算法时间复杂度:
相关文章
|
4月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
40 0
|
3月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
3月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
3月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
3月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
|
5月前
|
机器学习/深度学习 人工智能 算法
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
本文全面介绍了人工智能(AI)的基础知识、操作教程、算法实现及其在实际项目中的应用。首先,从AI的概念出发,解释了AI如何使机器具备学习、思考、决策和交流的能力,并列举了日常生活中的常见应用场景,如手机助手、推荐系统、自动驾驶等。接着,详细介绍了AI在提高效率、增强用户体验、促进技术创新和解决复杂问题等方面的显著作用,同时展望了AI的未来发展趋势,包括自我学习能力的提升、人机协作的增强、伦理法规的完善以及行业垂直化应用的拓展等...
232 3
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
|
6月前
|
机器学习/深度学习 数据采集 人工智能
机器学习算法入门与实践
【7月更文挑战第22天】机器学习算法入门与实践是一个既充满挑战又极具吸引力的过程。通过掌握基础知识、理解常见算法、注重数据预处理和模型选择、持续学习新技术和参与实践项目,你可以逐步提高自己的机器学习技能,并在实际应用中取得优异的成绩。记住,机器学习是一个不断迭代和改进的过程,保持好奇心和耐心,你将在这个领域走得更远。
|
6月前
|
消息中间件 存储 算法
实战算法的基础入门(2)
实战算法的基础入门
|
6月前
|
算法 大数据
实战算法的基础入门(1)
实战算法的基础入门

热门文章

最新文章