%matplotlib inline import matplotlib.pyplot as plt import numpy as np
1. PCA介绍
1.1 概念
思想:
dots = np.array([[1, 1.5], [2, 1.5], [3, 3.6], [4, 3.2], [5, 5.5]]) def cross_point(x0, y0): """ 1. line1: y = x 2. line2: y = -x + b => x = b/2 3. [x0, y0] is in line2 => b = x0 + y0 => x1 = b/2 = (x0 + y0) / 2 => y1 = x1 """ x1 = (x0 + y0) / 2 return x1, x1 plt.figure(figsize=(8, 6), dpi=144) plt.title('2-dimension to 1-dimension') plt.xlim(0, 8) plt.ylim(0, 6) ax = plt.gca() # gca 代表当前坐标轴,即 'get current axis' ax.spines['right'].set_color('none') # 隐藏坐标轴 ax.spines['top'].set_color('none') plt.scatter(dots[:, 0], dots[:, 1], marker='s', c='b') plt.plot([0.5, 6], [0.5, 6], '-r') for d in dots: x1, y1 = cross_point(d[0], d[1]) plt.plot([d[0], x1], [d[1], y1], '--b') plt.scatter(x1, y1, marker='o', c='r') plt.annotate(r'projection point', xy=(x1, y1), xycoords='data', xytext=(x1 + 0.5, y1 - 0.5), fontsize=10, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.annotate(r'vector $u^{(1)}$', xy=(4.5, 4.5), xycoords='data', xytext=(5, 4), fontsize=10, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
图中正方形的点是原始数据经过预处理后(归一化、缩放)的数据,圆形的点是从一维恢复到二维后的数据。同时,我们画出主成分特征向量u1,u2 。根据上图,来介绍几个有意思的结论:首先,圆形的点实际上就是方形的点在向量u1,u2 所在直线上的投影。所谓PCA数据恢复,并不是真正的恢复,只是把降维后的坐标转换为原坐标系中的坐标而已。针对我们的例子,只是把由向量u1,u2 决定的一维坐标系中的坐标转换为原始二维坐标系中的坐标。其次,主成分特征向量u1,u2是相互垂直的。再次,方形点和圆形点之间的距离,就是PCA数据降维后的误差。
1.2 降维及恢复示意图
dots = np.array([[1, 1.5], [2, 1.5], [3, 3.6], [4, 3.2], [5, 5.5]]) def cross_point(x0, y0): """ 1. line1: y = x 2. line2: y = -x + b => x = b/2 3. [x0, y0] is in line2 => b = x0 + y0 => x1 = b/2 = (x0 + y0) / 2 => y1 = x1 """ x1 = (x0 + y0) / 2 return x1, x1 plt.figure(figsize=(8, 6), dpi=144) plt.title('2-dimension to 1-dimension') plt.xlim(0, 8) plt.ylim(0, 6) ax = plt.gca() # gca 代表当前坐标轴,即 'get current axis' ax.spines['right'].set_color('none') # 隐藏坐标轴 ax.spines['top'].set_color('none') plt.scatter(dots[:, 0], dots[:, 1], marker='s', c='b') plt.plot([0.5, 6], [0.5, 6], '-r') for d in dots: x1, y1 = cross_point(d[0], d[1]) plt.plot([d[0], x1], [d[1], y1], '--b') plt.scatter(x1, y1, marker='o', c='r') plt.annotate(r'projection point', xy=(x1, y1), xycoords='data', xytext=(x1 + 0.5, y1 - 0.5), fontsize=10, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.annotate(r'vector $u^{(1)}$', xy=(4.5, 4.5), xycoords='data', xytext=(5, 4), fontsize=10, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) 1
Text(0.03390904029252009, -0.28050757997562326, 'projected data')
2. PCA 算法模拟
2.1 Numpy实现
A = np.array([[3, 2000], [2, 3000], [4, 5000], [5, 8000], [1, 2000]], dtype='float') # 数据归一化 mean = np.mean(A, axis=0) norm = A - mean # 数据缩放 scope = np.max(norm, axis=0) - np.min(norm, axis=0) norm = norm / scope norm
array([[ 0. , -0.33333333], [-0.25 , -0.16666667], [ 0.25 , 0.16666667], [ 0.5 , 0.66666667], [-0.5 , -0.33333333]])
U, S, V = np.linalg.svd(np.dot(norm.T, norm)) U
array([[-0.67710949, -0.73588229], [-0.73588229, 0.67710949]])
U_reduce = U[:, 0].reshape(2,1) U_reduce
array([[-0.67710949], [-0.73588229]])
R = np.dot(norm, U_reduce) R
array([[ 0.2452941 ], [ 0.29192442], [-0.29192442], [-0.82914294], [ 0.58384884]])
Z = np.dot(R, U_reduce.T) Z
array([[-0.16609096, -0.18050758], [-0.19766479, -0.21482201], [ 0.19766479, 0.21482201], [ 0.56142055, 0.6101516 ], [-0.39532959, -0.42964402]])
np.multiply(Z, scope) + mean
array([[2.33563616e+00, 2.91695452e+03], [2.20934082e+00, 2.71106794e+03], [3.79065918e+00, 5.28893206e+03], [5.24568220e+00, 7.66090960e+03], [1.41868164e+00, 1.42213588e+03]])
2.2 sklearn 包实现
from sklearn.decomposition import PCA from sklearn.pipeline import Pipeline from sklearn.preprocessing import MinMaxScaler def std_PCA(**argv): # MinMaxScaler对数据进行预处理 scaler = MinMaxScaler() # PCA算法 pca = PCA(**argv) pipeline = Pipeline([('scaler', scaler), ('pca', pca)]) return pipeline pca = std_PCA(n_components=1) R2 = pca.fit_transform(A) R2
array([[-0.2452941 ], [-0.29192442], [ 0.29192442], [ 0.82914294], [-0.58384884]])
pca.inverse_transform(R2)
array([[2.33563616e+00, 2.91695452e+03], [2.20934082e+00, 2.71106794e+03], [3.79065918e+00, 5.28893206e+03], [5.24568220e+00, 7.66090960e+03], [1.41868164e+00, 1.42213588e+03]])
3. 实例:pca进行人脸降维
%matplotlib inline import matplotlib.pyplot as plt import numpy as np
from sklearn.datasets import fetch_olivetti_faces # fetch_olivetti_faces函数可以帮助我们截取中间部分,只留下脸部特征 faces = fetch_olivetti_faces(data_home='datasets/') X = faces.data y = faces.target image = faces.images print("data:{}, label:{}, image:{}".format(X.shape, y.shape, image.shape))
data:(400, 4096), label:(400,), image:(400, 64, 64)
查看部分图像
target_names = np.array(["c%d" % i for i in np.unique(y)]) target_names
array(['c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9', 'c10', 'c11', 'c12', 'c13', 'c14', 'c15', 'c16', 'c17', 'c18', 'c19', 'c20', 'c21', 'c22', 'c23', 'c24', 'c25', 'c26', 'c27', 'c28', 'c29', 'c30', 'c31', 'c32', 'c33', 'c34', 'c35', 'c36', 'c37', 'c38', 'c39'], dtype='<U3')
plt.figure(figsize=(12, 11), dpi=100) # 这里显示两个人的各5张图像 shownum = 40 # 提取前k个人的名字 title = target_names[:int(shownum/10)] j = 1 # 每个人的10张图像主题曲前面的5张来展示 for i in range(shownum): if i%10 < 5: plt.subplot(int(shownum/10),5,j) plt.title("people:"+title[int(i/10)]) plt.imshow(image[i],cmap=plt.cm.gray) j+=1
提取全部40人的第一张图像,并进行展示
subimage = None for i in range(len(image)): if i%10 == 0: if subimage is not None: # print("subimage.shape:{},image[i].shape:{}",subimage.shape, image[i].shape) subimage = np.concatenate((subimage, image[i].reshape(1,64,64)), axis=0) else: subimage = image[i].reshape(1,64,64) plt.figure(figsize=(12,6), dpi=100) for i in range(subimage.shape[0]): plt.subplot(int(subimage.shape[0]/10), 10, i+1) plt.imshow(subimage[i], cmap=plt.cm.gray) plt.title("name:"+target_names[i]) plt.axis('off')
划分数据集
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.2, random_state=4) X_train.shape, X_test.shape, y_train.shape, y_test.shape
((320, 4096), (80, 4096), (320,), (80,))
使用svm来实现人脸识别
from sklearn.svm import SVC # 指定SVC的class_weight参数,让SVC模型能根据训练样本的数量来均衡地调整权重 clf = SVC(class_weight='balanced') # 训练 clf.fit(X_train, y_train) # 计算得分 trainscore = clf.score(X_train,y_train) testscore = clf.score(X_test,y_test) print("trainscore:{},testscore:{}".format(trainscore, testscore)) # 预测 y_pred = clf.predict(X_test)
from sklearn.svm import SVC # 指定SVC的class_weight参数,让SVC模型能根据训练样本的数量来均衡地调整权重 clf = SVC(class_weight='balanced') # 训练 clf.fit(X_train, y_train) # 计算得分 trainscore = clf.score(X_train,y_train) testscore = clf.score(X_test,y_test) print("trainscore:{},testscore:{}".format(trainscore, testscore)) # 预测 y_pred = clf.predict(X_test)
显示图像测试集图像
# plt.figure(figsize=(12,6), dpi=100) plt.subplot(1,1,1) plt.imshow(X_test[1].reshape(64,64), cmap=plt.cm.gray)
<matplotlib.image.AxesImage at 0x21fb6d83688>
预测是正确的,可以发现svm的预测效果非常好
y_test[1] == y_pred[1]
True
其中PCA模型的explained_variance_ratio变量可以获取经PCA处理后的数据还原率
from sklearn.decomposition import PCA pca = PCA(n_components=140) X_pca = pca.fit_transform(X) np.sum(pca.explained_variance_ratio_)
0.9585573
现在使用的是4096个特征,现在使用PCA对特征进行降维,再查看图像的变化;
from sklearn.decomposition import PCA # 原图展示 plt.figure(figsize=(12,8), dpi=100) subimage = faces.images[:5] for i in range(5): plt.subplot(1, 5, i+1) plt.imshow(subimage[i], cmap=plt.cm.gray) plt.axis('off') # 降维后的图片展示 k = [140, 75, 37, 19, 8] plt.figure(figsize=(12,12), dpi=100) for index in range(len(k)): pca = PCA(n_components=k[index]) # 进行降维处理 X_pca = pca.fit_transform(X) # 重新升维,中间过程有损耗 X_invert_pca = pca.inverse_transform(X_pca) image = X_invert_pca.reshape(-1,64,64) subimage = image[:5] for i in range(len(k)): plt.subplot(len(k), 5, (i+1)+len(k)*index) plt.imshow(subimage[i], cmap=plt.cm.gray) # plt.title("name:"+target_names[i]) plt.axis('off')
可以看见降维后的人脸逐渐模糊,从4096特征维度讲到140维度还是可以保持脸部的大部分特征
https://zhuanlan.zhihu.com/p/271969151 关于 fit(), transform(), fit_transform()区别,这篇博客有介绍
必须先用fit_transform(trainData),之后再transform(testData)。如果直接transform(testData),程序会报错
如果fit_transfrom(trainData)后,使用fit_transform(testData)而不transform(testData),虽然也能归一化,但是两个结果不是在同一个“标准”下的,具有明显差异。也就是我们需要用处理训练集的归一化过程来处理测试集,确保有相同的数据处理。
from sklearn.svm import SVC # 设定多降到的维度 pca = PCA(n_components=140) # 先使用训练集对进行训练与归一化处理 X_train_pca = pca.fit_transform(X_train) # 然后对测试采用训练集同样的参数进行归一化处理 X_test_pca = pca.transform(X_test) # 指定SVC的class_weight参数,让SVC模型能根据训练样本的数量来均衡地调整权重 clf = SVC(class_weight='balanced') # 用归一化后的数据给svm进行训练 clf.fit(X_train_pca, y_train) # 计算得分 trainscore = clf.score(X_train_pca,y_train) testscore = clf.score(X_test_pca,y_test) print("trainscore:{},testscore:{}".format(trainscore, testscore))
trainscore:1.0,testscore:0.975
使用GridSearchCV来进一步筛选
from sklearn.model_selection import GridSearchCV # print("Searching the best parameters for SVC ...") param_grid = {'C': [1, 5, 10, 50, 100], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01]} clf = GridSearchCV(SVC(kernel='rbf', class_weight='balanced'), param_grid, verbose=2, n_jobs=4) clf = clf.fit(X_train_pca, y_train) print("Best parameters found by grid search:",clf.best_params_) # 计算得分 trainscore = clf.score(X_train_pca,y_train) testscore = clf.score(X_test_pca,y_test) print("trainscore:{},testscore:{}".format(trainscore, testscore))
Fitting 5 folds for each of 25 candidates, totalling 125 fits Best parameters found by grid search: {'C': 5, 'gamma': 0.005} trainscore:1.0,testscore:0.9625
可以看见效果还是非常不错的
import pandas as pd result = pd.DataFrame() result['pred'] = y_pred result['true'] = y_test result['compares'] = y_pred==y_test result.head(10)