行列式概述 | 学习笔记

简介: 快速学习行列式概述

开发者学堂课程【人工智能必备基础:线性代数:行列式概述】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/543/detail/7380


行列式概述

内容简介

一、二阶行列式

二、三阶行列式

 

一、二阶行列式

用消元法解二元线性方程组

image.png

为消去未知数 x2,以 a22 与 a12 分别乘上列两方程的两端,然后两个方程相减,得

image.png

类似地,消去 x1,得

image.png

当 a11 a22 -a12 a21≠0 时,求得方程组的解为

image.png

)式中的分子、分母都是四个数分两对相乘再相减而得,其中分母 a11 a22 - a12 a21 是由方程组的四个系数确定的,把这四个数按它们在方程组中的位置,排成二行二列(横排称行、竖排称列)的数表

image.png

表达式  a11 a22 -a12 a21 称为数表所确定的二阶行列式,并记作

image.png

数 aij(i= 1,2;j= 1,2)称为行列式的元素或元.元素  aij 的第一个下标 i 称为行标,表明该元素位于第 i 行;第二个下标 j 称为列标表明该元素位于第 j 列.位于第 i 行第 j 列的元素称为行列式的(i,j)元. 上述二阶行列式的定义,可用对角线法则来记忆.参看图 1.1,把 a11 到 a22 的实连线称为主对角线,a12 到 a21 的虚连线称为副对角线,于是 二阶行列式便是主对角线上的两元素之积减去副对角线上两 元素之积所得的差.

image.png

 

二、三阶行列式

设有 9 个数排成 3 行 3 列的数表

a11   a12   a13

a21   a22   a23

a31   a32   a33 ,

记作

image.png

image.png

上述定义表明三阶行列式含 6 项,每项均为不同行不同列的三个元素的乘 积再冠以正负号,其规律遵循图 1.2 所示的对角线法则:图中有三条实线看做是 平行于主对角线的连线,三条虚线看做是平行于副对角线的连线,实线上三元素的乘积冠正号,虚线上三元素的乘积冠负号.

image.png

相关文章
|
6月前
线性代数——(期末突击)矩阵(上)-概念篇(矩阵的定义、矩阵的运算、特殊矩阵、初等变换)
线性代数——(期末突击)矩阵(上)-概念篇(矩阵的定义、矩阵的运算、特殊矩阵、初等变换)
113 7
R语言笔记丨矩阵、数组介绍
R语言笔记丨矩阵、数组介绍
MATLABA快速入门(六):数值微积分
MATLABA快速入门(六):数值微积分
64 0
|
机器学习/深度学习 人工智能
线性代数基础--矩阵
线性代数基础--矩阵
1369 0
|
人工智能 缓存 移动开发
通用矩阵乘算法从入门到实践
通用矩阵乘算法从入门到实践
351 0
|
人工智能 开发者
矩阵基本操作 | 学习笔记
快速学习矩阵基本操作
矩阵基本操作 | 学习笔记
|
算法 数据挖掘
谱聚类概述
简述 图相关的符号符号 相似度矩阵S 拉普拉斯矩阵L性质 谱聚类算法 总结 一、简述 聚类是对探索性数据分析最广泛使用的技术,在现在各个科学领域中处理没有类标的数据时,人们总是想通过确定数据中不同样本的归类,来获取对数据的直观印象。
1233 0
|
存储 NoSQL
《R语言编程艺术》——3.1 创建矩阵
本节书摘来自华章计算机《R语言编程艺术》一书中的第3章,第3.1节,作者:(美)麦特洛夫(Matloff,N.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。
1267 0

热门文章

最新文章