【Flink-API】Table API & SQL 以及自定义UDF函数

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【Flink-API】Table API & SQL 以及自定义UDF函数

一、 Flink Table API & SQL简介


1.1 Table API & SQL的背景


Flink虽然已经拥有了强大的DataStream/DataSet API,而且非常的灵活,但是需要熟练使用Eva或Scala的编程Flink编程API编写程序,为了满足流计算和批计算中的各种场景需求,同时降低用户使用门槛,Flink供- -种关系型的API来实现流与批的统一,那么这就是Flink的Table & SQL API。

自2015年开始,阿里巴巴开始调研开源流计算引擎,最终决定基于Flink打造新一代计算引擎,针对Flink存在的不足进行优化和改进,并且在2019年初将最终代码开源,也就是我们熟知的Blink。Blink 在原来的Flink基础_上最显著的一个贡献就是Flink SQL的实现。


1.2 Table API & SQL的特点


Table & SQL API是-种关系型API,用户可以像操作mysql数据库表一样的操作数据, 而不需要写java代码完成Flink Function,更不需要手工的优化java代码调优。另外,SQL 作为一个非程序员可操作的语言,学习成本很低,如果一个系统提供SQL支持,将很容易被用户接受。

●Table API & SQL是关系型声明式的,是处理关系型结构化数据的

●Table API & SQL批流统一 ,支持stream流计算和batch离线计算

●Table API & SQL查询能够被有效的优化,查询可以高效的执行

●Table API & SQL编程比较容易,但是灵活度没有DataStream/DataSet API和底层Low-leve |API强


20200924172416804.png


二、离线计算TableAPI & SQL


2.1 ●BatchSQLEnvironmept (离线批处理Table API)

public class BachWordCountSQL {
    public static void main(String[] args) throws Exception {
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        BatchTableEnvironment tEnv = BatchTableEnvironment.create(env);
        DataSet<WordCount> input = env.fromElements(
                new WordCount("storm", 1L),
                new WordCount("flink", 1L),
                new WordCount("hadoop", 1L),
                new WordCount("flink", 1L),
                new WordCount("storm", 1L),
                new WordCount("storm", 1L)
        );
        tEnv.registerDataSet("wordcount",input,"word,counts");
        String sql = "select word,sum(counts) as counts from wordcount group by word" +
                "having sum(counts) >=2 order by counts desc";
        Table table = tEnv.sqlQuery(sql);
        DataSet<WordCount> result = tEnv.toDataSet(table, WordCount.class);
        result.print();
    }
}

2.2 ●BatchTableEnvironmept (离线批处理Table API)

public class BachWordCountTable {
    public static void main(String[] args) throws Exception {
        ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
        BatchTableEnvironment tEnv = BatchTableEnvironment.create(env);
        DataSet<WordCount> input = env.fromElements(
                new WordCount("storm", 1L),
                new WordCount("flink", 1L),
                new WordCount("hadoop", 1L),
                new WordCount("flink", 1L),
                new WordCount("storm", 1L),
                new WordCount("storm", 1L)
        );
        Table table = tEnv.fromDataSet(input);
        Table filtered = table.groupBy("word")
                .select("word,counts.sum as counts")
                .filter("counts>=2")
                .orderBy("counts.desc");
        DataSet<WordCount> wordCountDataSet = tEnv.toDataSet(filtered, WordCount.class);
        wordCountDataSet.print();
    }
}

执行结果:


20200924192835516.png

三、实时计算TableAPI & SQL


3.1 ●StreamSQLEnvironment (实时流处理Table API)

public class StreamSqlWordCount {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //1.实时的table的上下文
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        // socket 数据源[hadoop spark flink]
        DataStreamSource<String> lines = env.socketTextStream("192.168.52.200", 8888);
        SingleOutputStreamOperator<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String line, Collector<String> out) throws Exception {
                Arrays.stream(line.split(" ")).forEach(out::collect);
            }
        });
        //2.注册成为表
        tableEnv.registerDataStream("t_wordcount",words,"word");
        //3.SQL
        Table table = tableEnv.sqlQuery("SELECT word,COUNT(1) counts FROM t_wordcount GROUP BY word");
        //4.结果
        DataStream<Tuple2<Boolean, WordCount>> dataStream = tableEnv.toRetractStream(table, WordCount.class);
        dataStream.print();
        env.execute();
    }
}

运行结果如下:

20200924190153331.png


3.2 ●StreamTableEnvironment (实时流处理Table API)

    //2.注册成为表
        Table table = tableEnv.fromDataStream(words, "word");
        Table table2 = table.groupBy("word").select("word,count(1) as counts");
        DataStream<Tuple2<Boolean, Row>> dataStream = tableEnv.toRetractStream(table2, Row.class);
        dataStream.print();
        env.execute();


四、Window窗口和TableAPI & SQL


4.1 Thumb滚动窗口


实现滚动不同窗口内相同用户的金额计算,将窗口的起始结束时间,金额相加。


数据如下:

1000,user01,p1,5

2000,user01,p1,5

2000,user02,p1,3

3000,user01,p1,5

9999,user02,p1,3

19999,user01,p1,5

程序如下:

public class TumblingEventTimeWindowTable {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        DataStreamSource<String> socketDataStream = env.socketTextStream("192.168.52.200", 8888);
        SingleOutputStreamOperator<Row> rowDataStream = socketDataStream.map(new MapFunction<String, Row>() {
            @Override
            public Row map(String line) throws Exception {
                String[] fields = line.split(",");
                Long time = Long.parseLong(fields[0]);
                String uid = fields[1];
                String pid = fields[2];
                Double money = Double.parseDouble(fields[3]);
                return Row.of(time, uid, pid, money);
            }
        }).returns(Types.ROW(Types.LONG, Types.STRING, Types.STRING, Types.DOUBLE));
        SingleOutputStreamOperator<Row> waterMarkRow = rowDataStream.assignTimestampsAndWatermarks(
                new BoundedOutOfOrdernessTimestampExtractor<Row>(Time.seconds(0)) {
                    @Override
                    public long extractTimestamp(Row row) {
                        return (long) row.getField(0);
                    }
                }
        );
        tableEnv.registerDataStream("t_orders",waterMarkRow,"atime,uid,pid,money,rowtime.rowtime");
        Table table = tableEnv.scan("t_orders")
                .window(Tumble.over("10.seconds").on("rowtime").as("win"))
                .groupBy("uid,win")
                .select("uid,win.start,win.end,win.rowtime,money.sum as total");
        tableEnv.toAppendStream(table,Row.class).print();
        env.execute();
    }
}

运行结果如下:

20200924200216704.png


五、Kafka数据源—>Table API & SQL


5.1 KafkaToSQL

public class KafkaWordCountToSql {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        tableEnv.connect(new Kafka()
                .version("universal")
                .topic("json-input")
                .startFromEarliest()
                .property("bootstrap.servers","hadoop1:9092")
        ).withFormat(new Json().deriveSchema()).withSchema(new Schema()
                .field("name", TypeInformation.of(String.class))
                .field("gender",TypeInformation.of(String.class))
        ).inAppendMode().registerTableSource("kafkaSource");
        Table select = tableEnv.scan("kafkaSource").groupBy("gender")
                .select("gender,count(1) as counts");
        tableEnv.toRetractStream(select, Row.class).print();
        env.execute();
    }
}


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2月前
|
SQL Oracle 关系型数据库
SQL优化-使用联合索引和函数索引
在一次例行巡检中,发现一条使用 `to_char` 函数将日期转换为字符串的 SQL 语句 CPU 利用率很高。为了优化该语句,首先分析了 where 条件中各列的选择性,并创建了不同类型的索引,包括普通索引、函数索引和虚拟列索引。通过对比不同索引的执行计划,最终确定了使用复合索引(包含函数表达式)能够显著降低查询成本,提高执行效率。
|
2月前
|
SQL 数据库 数据库管理
数据库SQL函数应用技巧与方法
在数据库管理中,SQL函数是处理和分析数据的强大工具
|
2月前
|
SQL 数据库 索引
SQL中COUNT函数结合条件使用的技巧与方法
在SQL查询中,COUNT函数是一个非常常用的聚合函数,用于计算表中满足特定条件的记录数
|
2月前
|
SQL 关系型数据库 MySQL
SQL日期函数
SQL日期函数
|
16天前
|
JSON API 数据格式
淘宝 / 天猫官方商品 / 订单订单 API 接口丨商品上传接口对接步骤
要对接淘宝/天猫官方商品或订单API,需先注册淘宝开放平台账号,创建应用获取App Key和App Secret。之后,详细阅读API文档,了解接口功能及权限要求,编写认证、构建请求、发送请求和处理响应的代码。最后,在沙箱环境中测试与调试,确保API调用的正确性和稳定性。
|
28天前
|
供应链 数据挖掘 API
电商API接口介绍——sku接口概述
商品SKU(Stock Keeping Unit)接口是电商API接口中的一种,专门用于获取商品的SKU信息。SKU是库存量单位,用于区分同一商品的不同规格、颜色、尺寸等属性。通过商品SKU接口,开发者可以获取商品的SKU列表、SKU属性、库存数量等详细信息。
|
1月前
|
JSON API 数据格式
店铺所有商品列表接口json数据格式示例(API接口)
当然,以下是一个示例的JSON数据格式,用于表示一个店铺所有商品列表的API接口响应
|
2月前
|
编解码 监控 API
直播源怎么调用api接口
调用直播源的API接口涉及开通服务、添加域名、获取API密钥、调用API接口、生成推流和拉流地址、配置直播源、开始直播、监控管理及停止直播等步骤。不同云服务平台的具体操作略有差异,但整体流程简单易懂。
|
20天前
|
JSON API 数据安全/隐私保护
拍立淘按图搜索API接口返回数据的JSON格式示例
拍立淘按图搜索API接口允许用户通过上传图片来搜索相似的商品,该接口返回的通常是一个JSON格式的响应,其中包含了与上传图片相似的商品信息。以下是一个基于淘宝平台的拍立淘按图搜索API接口返回数据的JSON格式示例,同时提供对其关键字段的解释
|
2月前
|
人工智能 自然语言处理 PyTorch
Text2Video Huggingface Pipeline 文生视频接口和文生视频论文API
文生视频是AI领域热点,很多文生视频的大模型都是基于 Huggingface的 diffusers的text to video的pipeline来开发。国内外也有非常多的优秀产品如Runway AI、Pika AI 、可灵King AI、通义千问、智谱的文生视频模型等等。为了方便调用,这篇博客也尝试了使用 PyPI的text2video的python库的Wrapper类进行调用,下面会给大家介绍一下Huggingface Text to Video Pipeline的调用方式以及使用通用的text2video的python库调用方式。