Python 页面解析:Beautiful Soup库的使用

简介: 简称BS4(其中 4 表示版本号)是一个 Python 中常用的页面解析库,它可以从 HTML 或 XML 文档中快速地提取指定的数据。相比于之前讲过的lxml库,更加简单易用,不像正则和 XPath 需要刻意去记住很多特定语法,尽管那样会效率更高更直接。对大多数 Python 使用者来说,好用会比高效更重要。库为第三方库,需要我们通过pipBS4解析页面时需要依赖文档解析器,所以还需要一个文档解析器。Python 自带了一个文档解析库, 但是其解析速度稍慢,所以我们结合上篇内容(
✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页: 小嗷犬的博客
🍊个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。
🥭本文内容:Python 页面解析:Beautiful Soup库的使用

1.Beautiful Soup库简介

Beautiful Soup 简称 BS4(其中 4 表示版本号)是一个 Python 中常用的页面解析库,它可以从 HTML 或 XML 文档中快速地提取指定的数据。

相比于之前讲过的 lxml 库,Beautiful Soup 更加简单易用,不像正则和 XPath 需要刻意去记住很多特定语法,尽管那样会效率更高更直接。

对大多数 Python 使用者来说,好用会比高效更重要。

Beautiful Soup库为第三方库,需要我们通过pip命令安装:

pip install bs4
BS4 解析页面时需要依赖文档解析器,所以还需要一个文档解析器。
Python 自带了一个文档解析库 html.parser, 但是其解析速度稍慢,安装 lxml 作为文档解析库:
pip install lxml

2.Beautiful Soup库方法介绍

使用 bs4 的初始化操作,是用文本创建一个 BeautifulSoup 对象,并指定文档解析器:
from bs4 import BeautifulSoup

html_str = '''
<div>
    <ul>
        <li class="web" id="0"><a href="www.python.org">Python</a></li>
        <li class="web" id="1"><a href="www.java.com">Java</a></li>
        <li class="web" id="2"><a href="www.csdn.net">CSDN</a></li>
    </ul>
</div>
'''

soup = BeautifulSoup(html_str, 'lxml')
# prettify()用于格式化输出HTML/XML文档
print(soup.prettify())
bs4 提供了 find_all()find()两个常用的查找方法它们的用法如下:

2.1 find_all()

find_all() 方法用来搜索当前 tag 的所有子节点,并判断这些节点是否符合过滤条件,最后以列表形式将符合条件的内容返回,语法格式如下:
find_all(name, attrs, recursive, text, limit)

参数说明:

  • name:查找所有名字为 name 的 tag 标签,字符串对象会被自动忽略。
  • attrs:按照属性名和属性值搜索 tag 标签,注意由于 class 是 Python 的关键字,所以要使用 "class_"。
  • recursive:find_all() 会搜索 tag 的所有子孙节点,设置 recursive=False 可以只搜索 tag 的直接子节点。
  • text:用来搜文档中的字符串内容,该参数可以接受字符串 、正则表达式 、列表、True。
  • limit:由于 find_all() 会返回所有的搜索结果,这样会影响执行效率,通过 limit 参数可以限制返回结果的数量。
from bs4 import BeautifulSoup

html_str = '''
<div>
    <ul>
        <li class="web" id="0"><a href="www.python.org">Python</a></li>
        <li class="web" id="1"><a href="www.java.com">Java</a></li>
        <li class="web" id="2"><a href="www.csdn.net">CSDN</a></li>
    </ul>
</div>
'''
soup = BeautifulSoup(html_str, 'lxml')

print(soup.find_all("li"))
print(soup.find_all("a"))
print(soup.find_all(text="Python"))
上面程序使用 find_all() 方法,来查找页面中所有的 <li></li>标签、 <a></a>标签和 "Python"字符串内容。

2.2 find()

find() 方法与 find_all() 方法极其相似,不同之处在于 find() 仅返回第一个符合条件的结果,因此 find() 方法也没有 limit参数,语法格式如下:
find(name, attrs, recursive, text)
除了和 find_all() 相同的使用方式以外, bs4find() 方法提供了一种简写方式:
soup.find("li")
soup.li
这两行代码的功能相同,都是返回第一个 <li></li>标签,完整程序:
from bs4 import BeautifulSoup

html_str = '''
<div>
    <ul>
        <li class="web" id="0"><a href="www.python.org">Python</a></li>
        <li class="web" id="1"><a href="www.java.com">Java</a></li>
        <li class="web" id="2"><a href="www.csdn.net">CSDN</a></li>
    </ul>
</div>
'''
soup = BeautifulSoup(html_str, 'lxml')

print(soup.li)
print(soup.a)
上面的程序会打印出第一个 <li></li>标签和第一个 <a></a>标签。

2.3 select()

bs4 支持大部分的 CSS 选择器,比如常见的标签选择器、类选择器、id 选择器,以及层级选择器。 Beautiful Soup 提供了一个 select() 方法,通过向该方法中添加选择器,就可以在 HTML 文档中搜索到与之对应的内容。

应用如下:

from bs4 import BeautifulSoup

html_str = '''
<div>
    <ul>
        <li class="web" id="web0"><a href="www.python.org">Python</a></li>
        <li class="web" id="web1"><a href="www.java.com">Java</a></li>
        <li class="web" id="web2"><a href="www.csdn.net">CSDN</a></li>
    </ul>
</div>
'''
soup = BeautifulSoup(html_str, 'lxml')
#根据元素标签查找
print(soup.select('body'))
#根据属性选择器查找
print(soup.select('a[href]'))
#根据类查找
print(soup.select('.web'))
#后代节点查找
print(soup.select('div ul'))
#根据id查找
print(soup.select('#web1'))
更多方法及其详细使用说明,请参见官方文档:
https://beautiful-soup-4.readthedocs.io/en/latest/

3.代码实例

学会了 Beautiful Soup ,让我们试着改写一下上次的爬虫代码吧:
import os
import sys
import requests
from bs4 import BeautifulSoup

x = requests.get('https://www.csdn.net/')

soup = BeautifulSoup(x.text, 'lxml')

img_list = soup.select('img[src]')

# 创建img文件夹
os.chdir(os.path.dirname(sys.argv[0]))

if not os.path.exists('img'):
    os.mkdir('img')
    print('创建文件夹成功')
else:
    print('文件夹已存在')

# 下载图片
for i in range(len(img_list)):
    item = img_list[i]['src']
    img = requests.get(item).content
    if item.endswith('jpg'):
        with open(f'./img/{i}.jpg', 'wb') as f:
            f.write(img)
    elif item.endswith('jpeg'):
        with open(f'./img/{i}.jpeg', 'wb') as f:
            f.write(img)
    elif item.endswith('png'):
        with open(f'./img/{i}.png', 'wb') as f:
            f.write(img)
    else:
        print(f'第{i + 1}张图片格式不正确')
        continue
    print(f'第{i + 1}张图片下载成功')
这就是本文的全部内容了,快去动手试试吧!
目录
相关文章
|
1月前
|
存储 安全 测试技术
Python面试题精选及解析
本文详解Python面试中的六大道经典问题,涵盖列表与元组区别、深浅拷贝、`__new__`与`__init__`、GIL影响、协程原理及可变与不可变类型,助你提升逻辑思维与问题解决能力,全面备战Python技术面试。
|
1月前
|
数据采集 数据挖掘 测试技术
Go与Python爬虫实战对比:从开发效率到性能瓶颈的深度解析
本文对比了Python与Go在爬虫开发中的特点。Python凭借Scrapy等框架在开发效率和易用性上占优,适合快速开发与中小型项目;而Go凭借高并发和高性能优势,适用于大规模、长期运行的爬虫服务。文章通过代码示例和性能测试,分析了两者在并发能力、错误处理、部署维护等方面的差异,并探讨了未来融合发展的趋势。
115 0
|
26天前
|
安全 JavaScript Java
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
本文通过10个真实场景,深入解析Python中表示“空值”的None与NoneType。从单例模式、函数返回值,到类型注解、性能优化,全面揭示None在语言设计与实际编程中的核心作用,帮助开发者正确高效地处理“无值”状态,写出更健壮、清晰的Python代码。
118 3
|
1月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
216 0
|
1月前
|
存储 程序员 数据处理
Python列表基础操作全解析:从创建到灵活应用
本文深入浅出地讲解了Python列表的各类操作,从创建、增删改查到遍历与性能优化,内容详实且贴近实战,适合初学者快速掌握这一核心数据结构。
128 0
|
1月前
|
存储 小程序 索引
Python变量与基础数据类型:整型、浮点型和字符串操作全解析
在Python编程中,变量和数据类型是构建程序的基础。本文介绍了三种基本数据类型:整型(int)、浮点型(float)和字符串(str),以及它们在变量中的使用方式和常见操作。通过理解变量的动态特性、数据类型的转换与运算规则,初学者可以更高效地编写清晰、简洁的Python代码,为后续学习打下坚实基础。
210 0
|
1月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
110 0
|
1月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍了基于Python的剪贴板监控技术,结合clipboard-monitor库实现高效、安全的数据追踪。内容涵盖技术选型、核心功能开发、性能优化及实战应用,适用于安全审计、自动化办公等场景,助力提升数据管理效率与安全性。
82 0
|
6月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
576 29

热门文章

最新文章

推荐镜像

更多