数据结构 | 队列都知道,单调队列有了解吗?

简介: 数据结构 | 队列都知道,单调队列有了解吗?

前言


  • 上一篇文章 我们讨论了单调栈,单调栈是一种非常适合处理 下一个更大元素(Next Greater Number ) 问题的数据结构,今天我们来讨论它的孪生兄弟 —— 单调队列;
  • 单调队列是一种非常适合处理 滑动窗口最大值 问题的数据结构,在面试中比较冷门,建议应试者合理安排学习时间;
  • 在这篇文章里,我将梳理单调队列的基本知识 & 常考题型。如果能帮上忙,请务必点赞加关注,这真的对我非常重要。


目录

image.png


1. 单调队列基础


单调队列和单调栈在很大程度上是类似的,它们均是在原有数据结构的基础上增加的单调的性质。 至于单调性的作用,在 上一篇文章 里我们已经讨论过了,就不重复展开了。记住关键结论是:利用单调的特性,以空间换时间优化时间复杂度。

那么,什么时候使用单调栈,什么时候使用单调队列呢?主要看你的算法中元素被排除的顺序,如果先进入集合的元素先排除,那么使用栈(LIFO);如果先进入集合的元素后排除,那么使用队列(FIFO)。


2. 单调队列解题框架


239. 滑动窗口最大值【题解】


这一节我们来看单调队列的原始题目,并根据这个例子来讨论单调栈的解题框架。


给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
复制代码


2.1 暴力解法


这道题的暴力解法很容易想到:每次移动窗口,遍历窗口元素找出最大值,整体的时间复杂度是O(nk)O(nk)O(nk),空间复杂度是O(1)O(1)O(1)。这个过程中存在很多重复的比较操作:我们每次仅仅往窗口里增加一个元素,剩下的其他元素也要相互比较来找出最值。


那么,有没有办法用O(1)O(1)O(1)时间复杂度找到窗口移动后的最大值呢?我们可以使用一个变量来记录最大值,此时只需要拿新加入的元素与这个 “最大值” 比较。但是,别忘了每加入一个元素必然还需要剔除一个元素,如果剔除的元素刚好是 “最大值”,那么你还是需要O(k)O(k)O(k)时间去找到那个 “次大值”。


既然一个变量搞不定,那么就多加几个变量,直接把滑动窗口内的 最大值、次大值、次次大值 .....、最小值都 「记忆化」,我就不信 O(1)O(1)O(1) 搞不定了,空间换时间的事嘛!


2.2 单调队列解法


下面,我们来讨论单调队列的解法,数据结构基础是双端队列:


  • 1、从左到右遍历每个元素,维护一个单调递增队列(从队尾到队头单调递增);
  • 2、当队列为空,将当前元素入队;
  • 3.1 当队列不为空,如果当前元素大于等于队尾元素,那么循环弹出队尾元素,直到队列为空或者当前元素小于队尾元素;
  • 3.2 当队列不为空,如果当前元素小于队尾元素,说明当前元素小于队列内所有元素(单调性),将当前元素入队。
  • 4、窗口移动时,如果剔除的元素正好是队头元素,那么将该元素出队;如果不是,那说明它已经在 第 3.1 步 中被提前排除了;
  • 5、获取队列的最大值,只需要查看队头元素即可。


image.png


—— 图片引用自 leetcode-cn.com/problems/sl… labuladong 著


class Solution {
    fun maxSlidingWindow(nums: IntArray, k: Int): IntArray {
        val result = IntArray(nums.size - k + 1)
        1、维护一个从队尾到队头单调递增的队列
        val queue = LinkedList<Int>()
        for ((index, num) in nums.withIndex()) {
            if (index < k - 1) {
                2、先填满窗口前 k - 1
                queue.offerMonotonic(num)
            } else {
                3、下一个元素入队,此时窗口大小为 k
                queue.offerMonotonic(num)
                4、记录最大值
                result[index - k + 1] = queue.max()
                5、窗口左侧元素出队
                queue.poll(nums[index - k + 1])
            }
        }
        return result
    }
    // -----------------------------------------------------
    // 单调队列:基于双端队列,从队尾到队头单调递增
    // -----------------------------------------------------
    private fun <T : Comparable<T>> Deque<T>.offerMonotonic(t: T) {
        while (isNotEmpty() && peekLast() < t) {
            pollLast()
        }
        offer(t)
    }
    private fun <T> Deque<T>.max(): T {
        return peekFirst()!!
    }
    private fun <T> Deque<T>.poll(t: T) {
        if (isNotEmpty() && peekFirst() == t) {
            pollFirst()
        }
    }
}
复制代码


复杂度分析:

  • 时间复杂度:O(n)
  • 空间复杂度:O(k)


虽然代码中有两层循环,但是算法的时间复杂度并不是O(nk)O(nk)O(nk),这是因为内层循环并不是搜索窗口(在暴力解法中,内层循环才是搜索整个窗口)。事实上,对于每个元素,它最多会入队和出队一次,不会因为数据规模增大而导致每个元素增加额外的操作,所以每次操作的时间复杂度是O(1)O(1)O(1)


3. 总结


  • 单调栈是在双端队列的基础上,利用了单调的特性,以空间换时间优化时间复杂度;
  • 当遇到滑动窗口的最大值问题时,可以考虑使用单调队列处理;
  • 与单调栈类似,单调队列也不能覆盖太大的问题域,应用价值不及其他数据结构;
  • 最后,你可以思考下这个问题能否用单调栈解决?如果不行,为什么?
目录
相关文章
|
12天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
84 9
|
15天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
初步认识栈和队列
初步认识栈和队列
58 10
|
1月前
|
存储 算法 定位技术
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
这篇文章主要介绍了稀疏数组和队列的概念、应用实例以及如何使用数组模拟队列和环形队列的实现方法。
20 0
数据结构与算法学习二、稀疏数组与队列,数组模拟队列,模拟环形队列
|
1月前
|
存储 安全 Java
【用Java学习数据结构系列】探索栈和队列的无尽秘密
【用Java学习数据结构系列】探索栈和队列的无尽秘密
29 2
|
29天前
【数据结构】-- 栈和队列
【数据结构】-- 栈和队列
15 0
|
1月前
探索数据结构:队列的的实现与应用
探索数据结构:队列的的实现与应用
|
1月前
|
存储 C语言
栈和队列题目练习
栈和队列题目练习
16 0
|
1月前
|
存储 算法 Java
【用Java学习数据结构系列】用堆实现优先级队列
【用Java学习数据结构系列】用堆实现优先级队列
29 0
|
1月前
|
C语言
数据结构------栈(Stack)和队列(Queue)
数据结构------栈(Stack)和队列(Queue)
19 0