Inception-v2/v3模型

简介: Inception-v2和Inception-v3都是出自同一篇论文《Rethinking the inception architecture for computer vision》,该论文提出了多种基于 Inception-v1 的模型优化 方法,Inception-v2 用了其中的一部分模型优化方法,Inception-v3 用了论文中提到的所有 优化方法。相当于 Inception-v2 只是一个过渡版本,Inception-v3 一般用得更多。
参考论文:Rethinking the Inception Architecture for Computer Vision

作者:Christian Szegedy; Vincent Vanhoucke; Sergey Ioffe; Jon Shlens; Zbigniew Wojna

1、Inception-v2/v3优化策略

  Inception-v2和Inception-v3都是出自同一篇论文《Rethinking the inception architecture for computer vision》,该论文提出了多种基于 Inception-v1 的模型优化 方法,Inception-v2 用了其中的一部分模型优化方法,Inception-v3 用了论文中提到的所有 优化方法。相当于 Inception-v2 只是一个过渡版本,Inception-v3 一般用得更多。

  Inception-v3 最大的优化是模型结构上的优化,在 Inception-v3 中作者对 Inception 结 构中的卷积进行了分解。分解后的好处是增加了网络的层数,也就是增加了网络的特征提取能力。同时作者还对 Inception 结构进行了一些调整,设计了不同的 Inception,用在模型 的不同位置。

  先回忆一下最原始的Inception结构,如下图所示

image-20220813105203999

   图中的 convolutions 表示卷积,filter concatenation 表示滤波器合并,max pooling 表示最大池化,previous layer 表示前一层。

  Inception-v3 中提出了一个新思路,可以使用两个 3×3 卷积来替代原始 Inception 结构 中的 5×5 卷积,如下图所示。

image-20220813105359526

  将 5×5 卷积分解为两层的 3×3 卷积,对于最后得到的特征来说,感受野的大小是相同 的,都是 5×5 的区域。相当于 5×5 卷积对 5×5 区域进行特征提取,得到一个特征值;两层的 3×3 卷积对 5×5 区域进行特征提取,也是得到一个特征值。这两种特征提取的方式类 似,不过最后得到的特征值可能是不同的,两层 3×3 卷积做了两次卷积得到的特征值或许会更好一些。

  沿着这个卷积分解的思路继续思考,作者又提出了一种新的卷积分解,把 3×3 卷积分解 为 1×3 卷积和 3×1 卷积,如下图所示。

image-20220813105518478

  把 3×3 卷积分解为 1×3 卷积和 3×1 卷积,道理跟将 5×5 卷积分解为两层的 3×3 卷积 差不多,对于最后的特征来说,感受野的大小是一样的,并且分解后可以让网络层数变得更 多,增加网络的非线性。理论上 n×n 的卷积都可以分解为 1×n 卷积和 n×1 卷积。

  作者还分析了减小特征图大小时的操作,如下图所示。

image-20220813105607590

  作者认为直接使用窗口大小 2×2,步长为 2 的池化来压缩特征图的大小效果不太好。因 为特征图的数量不变,但是特征图的长宽变成为原来的 1/2,相当于特征值的数量被压缩为 原来的 1/4 了,特征值的数量一下减少太多不利于模型的训练,所以左边的结构不太理想。 右边的结构先用 Inception 来增加特征图数量然后再进行池化减小特征图大小,对于特征的 提取来说没什么问题,就是计算量太大。

  所以设计了新的 Inception 结构,在减小特征图大小的同时可以增加特征图的数量,如下图所示。

image-20220813105711126

   图中 Filter Concat 表示滤波器拼接;stride 表示步长;concat 表示拼接;conv 表示卷 积;pool 表示池化。

  除此之外作者还根据实验分析和建模经验,设计了一些新的 Inception 结构,如下图所示。

image-20220813105758054

image-20220813105810839

2、Inception-v2/v3模型结构

  Inception-v2/v3 模型的结构非常庞大,Inception-v2/v3 论文中给出的模型结构描述也 不是特别清晰,结构如图所示。

image-20220813105931782

   Filter Concat 表示滤波器拼接;Pool 表示池化;type 表 示层的类型;patch size/stride or remarks 表示窗口大小/步长;input size 表示输入大 小;conv 表示卷积;pool 表示池化;linear 表示全连接层。

  figure5:将5*5卷积分解为2个3*3卷积

image-20220813110043188

  figure6:分解为不对称卷积

image-20220813110108070

  figure7:扩展滤波器组

image-20220813110133069

3、Inception-v3在ImageNet数据集中的表现

  Inception-v3 单模型测试结果:

image-20220813110400469

   图中 Network 表示网络;Crops Evaluated 表示模型评估时裁剪出多少张图片进行预 测;Top-5 Error 表示 Top5 错误率;Top-1 Error 表示 Top1 错误率。

  Inception-v3 模型融合后的测试结果。

image-20220813110501381

image-20220813110510279

   图中 Network 表示网络;Models Evaluated 表示评估时集成了几个模型;Crops Evaluated 表示模型评估时裁剪出多少张图片进行预测;Top-5 Error 表示 Top5 错误率; Top-1 Error 表示 Top1 错误率。

  Inception-v3 模型融合后的 Top5 错误率为 3.58%,这个结果跟 2015 年 ImageNet Challenge 图像识别比赛的冠军 ResNet 已经非常接近,ResNet 的 Top5 错误率为 3.57%。

4、迁移学习复现网络结构

import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.applications import InceptionV3
from plot_model import plot_model

model=InceptionV3(
    input_shape=(299,299,3),
    include_top=True,  # 是否包含最后的全连接层
    weights='imagenet',  # 权重默认为ImageNet一千类图像分类
    classes=1000        # 1000个类别
)

model.summary()
plot_model(model,to_file='img/inception-v3.png',show_shapes=True)
Model: "inception_v3"
__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            [(None, 299, 299, 3) 0                                            
__________________________________________________________________________________________________
conv2d (Conv2D)                 (None, 149, 149, 32) 864         input_1[0][0]                    
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 149, 149, 32) 96          conv2d[0][0]                     
__________________________________________________________________________________________________
activation (Activation)         (None, 149, 149, 32) 0           batch_normalization[0][0]        
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 147, 147, 32) 9216        activation[0][0]                 
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 147, 147, 32) 96          conv2d_1[0][0]                   
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 147, 147, 32) 0           batch_normalization_1[0][0]      
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 147, 147, 64) 18432       activation_1[0][0]               
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 147, 147, 64) 192         conv2d_2[0][0]                   
__________________________________________________________________________________________________
activation_2 (Activation)       (None, 147, 147, 64) 0           batch_normalization_2[0][0]      
__________________________________________________________________________________________________
max_pooling2d (MaxPooling2D)    (None, 73, 73, 64)   0           activation_2[0][0]               
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 73, 73, 80)   5120        max_pooling2d[0][0]              
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 73, 73, 80)   240         conv2d_3[0][0]                   
__________________________________________________________________________________________________
activation_3 (Activation)       (None, 73, 73, 80)   0           batch_normalization_3[0][0]      
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 71, 71, 192)  138240      activation_3[0][0]               
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 71, 71, 192)  576         conv2d_4[0][0]                   
__________________________________________________________________________________________________
activation_4 (Activation)       (None, 71, 71, 192)  0           batch_normalization_4[0][0]      
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D)  (None, 35, 35, 192)  0           activation_4[0][0]               
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 35, 35, 64)   12288       max_pooling2d_1[0][0]            
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 35, 35, 64)   192         conv2d_8[0][0]                   
__________________________________________________________________________________________________
activation_8 (Activation)       (None, 35, 35, 64)   0           batch_normalization_8[0][0]      
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 35, 35, 48)   9216        max_pooling2d_1[0][0]            
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 35, 35, 96)   55296       activation_8[0][0]               
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 35, 35, 48)   144         conv2d_6[0][0]                   
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, 35, 35, 96)   288         conv2d_9[0][0]                   
__________________________________________________________________________________________________
activation_6 (Activation)       (None, 35, 35, 48)   0           batch_normalization_6[0][0]      
__________________________________________________________________________________________________
activation_9 (Activation)       (None, 35, 35, 96)   0           batch_normalization_9[0][0]      
__________________________________________________________________________________________________
average_pooling2d (AveragePooli (None, 35, 35, 192)  0           max_pooling2d_1[0][0]            
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 35, 35, 64)   12288       max_pooling2d_1[0][0]            
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 35, 35, 64)   76800       activation_6[0][0]               
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 35, 35, 96)   82944       activation_9[0][0]               
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 35, 35, 32)   6144        average_pooling2d[0][0]          
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 35, 35, 64)   192         conv2d_5[0][0]                   
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 35, 35, 64)   192         conv2d_7[0][0]                   
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, 35, 35, 96)   288         conv2d_10[0][0]                  
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, 35, 35, 32)   96          conv2d_11[0][0]                  
__________________________________________________________________________________________________
activation_5 (Activation)       (None, 35, 35, 64)   0           batch_normalization_5[0][0]      
__________________________________________________________________________________________________
activation_7 (Activation)       (None, 35, 35, 64)   0           batch_normalization_7[0][0]      
__________________________________________________________________________________________________
activation_10 (Activation)      (None, 35, 35, 96)   0           batch_normalization_10[0][0]     
__________________________________________________________________________________________________
activation_11 (Activation)      (None, 35, 35, 32)   0           batch_normalization_11[0][0]     
__________________________________________________________________________________________________
mixed0 (Concatenate)            (None, 35, 35, 256)  0           activation_5[0][0]               
                                                                 activation_7[0][0]               
                                                                 activation_10[0][0]              
                                                                 activation_11[0][0]              
__________________________________________________________________________________________________
conv2d_15 (Conv2D)              (None, 35, 35, 64)   16384       mixed0[0][0]                     
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, 35, 35, 64)   192         conv2d_15[0][0]                  
__________________________________________________________________________________________________
activation_15 (Activation)      (None, 35, 35, 64)   0           batch_normalization_15[0][0]     
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 35, 35, 48)   12288       mixed0[0][0]                     
__________________________________________________________________________________________________
conv2d_16 (Conv2D)              (None, 35, 35, 96)   55296       activation_15[0][0]              
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, 35, 35, 48)   144         conv2d_13[0][0]                  
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, 35, 35, 96)   288         conv2d_16[0][0]                  
__________________________________________________________________________________________________
activation_13 (Activation)      (None, 35, 35, 48)   0           batch_normalization_13[0][0]     
__________________________________________________________________________________________________
activation_16 (Activation)      (None, 35, 35, 96)   0           batch_normalization_16[0][0]     
__________________________________________________________________________________________________
average_pooling2d_1 (AveragePoo (None, 35, 35, 256)  0           mixed0[0][0]                     
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 35, 35, 64)   16384       mixed0[0][0]                     
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 35, 35, 64)   76800       activation_13[0][0]              
__________________________________________________________________________________________________
conv2d_17 (Conv2D)              (None, 35, 35, 96)   82944       activation_16[0][0]              
__________________________________________________________________________________________________
conv2d_18 (Conv2D)              (None, 35, 35, 64)   16384       average_pooling2d_1[0][0]        
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, 35, 35, 64)   192         conv2d_12[0][0]                  
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, 35, 35, 64)   192         conv2d_14[0][0]                  
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, 35, 35, 96)   288         conv2d_17[0][0]                  
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, 35, 35, 64)   192         conv2d_18[0][0]                  
__________________________________________________________________________________________________
activation_12 (Activation)      (None, 35, 35, 64)   0           batch_normalization_12[0][0]     
__________________________________________________________________________________________________
activation_14 (Activation)      (None, 35, 35, 64)   0           batch_normalization_14[0][0]     
__________________________________________________________________________________________________
activation_17 (Activation)      (None, 35, 35, 96)   0           batch_normalization_17[0][0]     
__________________________________________________________________________________________________
activation_18 (Activation)      (None, 35, 35, 64)   0           batch_normalization_18[0][0]     
__________________________________________________________________________________________________
mixed1 (Concatenate)            (None, 35, 35, 288)  0           activation_12[0][0]              
                                                                 activation_14[0][0]              
                                                                 activation_17[0][0]              
                                                                 activation_18[0][0]              
__________________________________________________________________________________________________
conv2d_22 (Conv2D)              (None, 35, 35, 64)   18432       mixed1[0][0]                     
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, 35, 35, 64)   192         conv2d_22[0][0]                  
__________________________________________________________________________________________________
activation_22 (Activation)      (None, 35, 35, 64)   0           batch_normalization_22[0][0]     
__________________________________________________________________________________________________
conv2d_20 (Conv2D)              (None, 35, 35, 48)   13824       mixed1[0][0]                     
__________________________________________________________________________________________________
conv2d_23 (Conv2D)              (None, 35, 35, 96)   55296       activation_22[0][0]              
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, 35, 35, 48)   144         conv2d_20[0][0]                  
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, 35, 35, 96)   288         conv2d_23[0][0]                  
__________________________________________________________________________________________________
activation_20 (Activation)      (None, 35, 35, 48)   0           batch_normalization_20[0][0]     
__________________________________________________________________________________________________
activation_23 (Activation)      (None, 35, 35, 96)   0           batch_normalization_23[0][0]     
__________________________________________________________________________________________________
average_pooling2d_2 (AveragePoo (None, 35, 35, 288)  0           mixed1[0][0]                     
__________________________________________________________________________________________________
conv2d_19 (Conv2D)              (None, 35, 35, 64)   18432       mixed1[0][0]                     
__________________________________________________________________________________________________
conv2d_21 (Conv2D)              (None, 35, 35, 64)   76800       activation_20[0][0]              
__________________________________________________________________________________________________
conv2d_24 (Conv2D)              (None, 35, 35, 96)   82944       activation_23[0][0]              
__________________________________________________________________________________________________
conv2d_25 (Conv2D)              (None, 35, 35, 64)   18432       average_pooling2d_2[0][0]        
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, 35, 35, 64)   192         conv2d_19[0][0]                  
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, 35, 35, 64)   192         conv2d_21[0][0]                  
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, 35, 35, 96)   288         conv2d_24[0][0]                  
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, 35, 35, 64)   192         conv2d_25[0][0]                  
__________________________________________________________________________________________________
activation_19 (Activation)      (None, 35, 35, 64)   0           batch_normalization_19[0][0]     
__________________________________________________________________________________________________
activation_21 (Activation)      (None, 35, 35, 64)   0           batch_normalization_21[0][0]     
__________________________________________________________________________________________________
activation_24 (Activation)      (None, 35, 35, 96)   0           batch_normalization_24[0][0]     
__________________________________________________________________________________________________
activation_25 (Activation)      (None, 35, 35, 64)   0           batch_normalization_25[0][0]     
__________________________________________________________________________________________________
mixed2 (Concatenate)            (None, 35, 35, 288)  0           activation_19[0][0]              
                                                                 activation_21[0][0]              
                                                                 activation_24[0][0]              
                                                                 activation_25[0][0]              
__________________________________________________________________________________________________
conv2d_27 (Conv2D)              (None, 35, 35, 64)   18432       mixed2[0][0]                     
__________________________________________________________________________________________________
batch_normalization_27 (BatchNo (None, 35, 35, 64)   192         conv2d_27[0][0]                  
__________________________________________________________________________________________________
activation_27 (Activation)      (None, 35, 35, 64)   0           batch_normalization_27[0][0]     
__________________________________________________________________________________________________
conv2d_28 (Conv2D)              (None, 35, 35, 96)   55296       activation_27[0][0]              
__________________________________________________________________________________________________
batch_normalization_28 (BatchNo (None, 35, 35, 96)   288         conv2d_28[0][0]                  
__________________________________________________________________________________________________
activation_28 (Activation)      (None, 35, 35, 96)   0           batch_normalization_28[0][0]     
__________________________________________________________________________________________________
conv2d_26 (Conv2D)              (None, 17, 17, 384)  995328      mixed2[0][0]                     
__________________________________________________________________________________________________
conv2d_29 (Conv2D)              (None, 17, 17, 96)   82944       activation_28[0][0]              
__________________________________________________________________________________________________
batch_normalization_26 (BatchNo (None, 17, 17, 384)  1152        conv2d_26[0][0]                  
__________________________________________________________________________________________________
batch_normalization_29 (BatchNo (None, 17, 17, 96)   288         conv2d_29[0][0]                  
__________________________________________________________________________________________________
activation_26 (Activation)      (None, 17, 17, 384)  0           batch_normalization_26[0][0]     
__________________________________________________________________________________________________
activation_29 (Activation)      (None, 17, 17, 96)   0           batch_normalization_29[0][0]     
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D)  (None, 17, 17, 288)  0           mixed2[0][0]                     
__________________________________________________________________________________________________
mixed3 (Concatenate)            (None, 17, 17, 768)  0           activation_26[0][0]              
                                                                 activation_29[0][0]              
                                                                 max_pooling2d_2[0][0]            
__________________________________________________________________________________________________
conv2d_34 (Conv2D)              (None, 17, 17, 128)  98304       mixed3[0][0]                     
__________________________________________________________________________________________________
batch_normalization_34 (BatchNo (None, 17, 17, 128)  384         conv2d_34[0][0]                  
__________________________________________________________________________________________________
activation_34 (Activation)      (None, 17, 17, 128)  0           batch_normalization_34[0][0]     
__________________________________________________________________________________________________
conv2d_35 (Conv2D)              (None, 17, 17, 128)  114688      activation_34[0][0]              
__________________________________________________________________________________________________
batch_normalization_35 (BatchNo (None, 17, 17, 128)  384         conv2d_35[0][0]                  
__________________________________________________________________________________________________
activation_35 (Activation)      (None, 17, 17, 128)  0           batch_normalization_35[0][0]     
__________________________________________________________________________________________________
conv2d_31 (Conv2D)              (None, 17, 17, 128)  98304       mixed3[0][0]                     
__________________________________________________________________________________________________
conv2d_36 (Conv2D)              (None, 17, 17, 128)  114688      activation_35[0][0]              
__________________________________________________________________________________________________
batch_normalization_31 (BatchNo (None, 17, 17, 128)  384         conv2d_31[0][0]                  
__________________________________________________________________________________________________
batch_normalization_36 (BatchNo (None, 17, 17, 128)  384         conv2d_36[0][0]                  
__________________________________________________________________________________________________
activation_31 (Activation)      (None, 17, 17, 128)  0           batch_normalization_31[0][0]     
__________________________________________________________________________________________________
activation_36 (Activation)      (None, 17, 17, 128)  0           batch_normalization_36[0][0]     
__________________________________________________________________________________________________
conv2d_32 (Conv2D)              (None, 17, 17, 128)  114688      activation_31[0][0]              
__________________________________________________________________________________________________
conv2d_37 (Conv2D)              (None, 17, 17, 128)  114688      activation_36[0][0]              
__________________________________________________________________________________________________
batch_normalization_32 (BatchNo (None, 17, 17, 128)  384         conv2d_32[0][0]                  
__________________________________________________________________________________________________
batch_normalization_37 (BatchNo (None, 17, 17, 128)  384         conv2d_37[0][0]                  
__________________________________________________________________________________________________
activation_32 (Activation)      (None, 17, 17, 128)  0           batch_normalization_32[0][0]     
__________________________________________________________________________________________________
activation_37 (Activation)      (None, 17, 17, 128)  0           batch_normalization_37[0][0]     
__________________________________________________________________________________________________
average_pooling2d_3 (AveragePoo (None, 17, 17, 768)  0           mixed3[0][0]                     
__________________________________________________________________________________________________
conv2d_30 (Conv2D)              (None, 17, 17, 192)  147456      mixed3[0][0]                     
__________________________________________________________________________________________________
conv2d_33 (Conv2D)              (None, 17, 17, 192)  172032      activation_32[0][0]              
__________________________________________________________________________________________________
conv2d_38 (Conv2D)              (None, 17, 17, 192)  172032      activation_37[0][0]              
__________________________________________________________________________________________________
conv2d_39 (Conv2D)              (None, 17, 17, 192)  147456      average_pooling2d_3[0][0]        
__________________________________________________________________________________________________
batch_normalization_30 (BatchNo (None, 17, 17, 192)  576         conv2d_30[0][0]                  
__________________________________________________________________________________________________
batch_normalization_33 (BatchNo (None, 17, 17, 192)  576         conv2d_33[0][0]                  
__________________________________________________________________________________________________
batch_normalization_38 (BatchNo (None, 17, 17, 192)  576         conv2d_38[0][0]                  
__________________________________________________________________________________________________
batch_normalization_39 (BatchNo (None, 17, 17, 192)  576         conv2d_39[0][0]                  
__________________________________________________________________________________________________
activation_30 (Activation)      (None, 17, 17, 192)  0           batch_normalization_30[0][0]     
__________________________________________________________________________________________________
activation_33 (Activation)      (None, 17, 17, 192)  0           batch_normalization_33[0][0]     
__________________________________________________________________________________________________
activation_38 (Activation)      (None, 17, 17, 192)  0           batch_normalization_38[0][0]     
__________________________________________________________________________________________________
activation_39 (Activation)      (None, 17, 17, 192)  0           batch_normalization_39[0][0]     
__________________________________________________________________________________________________
mixed4 (Concatenate)            (None, 17, 17, 768)  0           activation_30[0][0]              
                                                                 activation_33[0][0]              
                                                                 activation_38[0][0]              
                                                                 activation_39[0][0]              
__________________________________________________________________________________________________
conv2d_44 (Conv2D)              (None, 17, 17, 160)  122880      mixed4[0][0]                     
__________________________________________________________________________________________________
batch_normalization_44 (BatchNo (None, 17, 17, 160)  480         conv2d_44[0][0]                  
__________________________________________________________________________________________________
activation_44 (Activation)      (None, 17, 17, 160)  0           batch_normalization_44[0][0]     
__________________________________________________________________________________________________
conv2d_45 (Conv2D)              (None, 17, 17, 160)  179200      activation_44[0][0]              
__________________________________________________________________________________________________
batch_normalization_45 (BatchNo (None, 17, 17, 160)  480         conv2d_45[0][0]                  
__________________________________________________________________________________________________
activation_45 (Activation)      (None, 17, 17, 160)  0           batch_normalization_45[0][0]     
__________________________________________________________________________________________________
conv2d_41 (Conv2D)              (None, 17, 17, 160)  122880      mixed4[0][0]                     
__________________________________________________________________________________________________
conv2d_46 (Conv2D)              (None, 17, 17, 160)  179200      activation_45[0][0]              
__________________________________________________________________________________________________
batch_normalization_41 (BatchNo (None, 17, 17, 160)  480         conv2d_41[0][0]                  
__________________________________________________________________________________________________
batch_normalization_46 (BatchNo (None, 17, 17, 160)  480         conv2d_46[0][0]                  
__________________________________________________________________________________________________
activation_41 (Activation)      (None, 17, 17, 160)  0           batch_normalization_41[0][0]     
__________________________________________________________________________________________________
activation_46 (Activation)      (None, 17, 17, 160)  0           batch_normalization_46[0][0]     
__________________________________________________________________________________________________
conv2d_42 (Conv2D)              (None, 17, 17, 160)  179200      activation_41[0][0]              
__________________________________________________________________________________________________
conv2d_47 (Conv2D)              (None, 17, 17, 160)  179200      activation_46[0][0]              
__________________________________________________________________________________________________
batch_normalization_42 (BatchNo (None, 17, 17, 160)  480         conv2d_42[0][0]                  
__________________________________________________________________________________________________
batch_normalization_47 (BatchNo (None, 17, 17, 160)  480         conv2d_47[0][0]                  
__________________________________________________________________________________________________
activation_42 (Activation)      (None, 17, 17, 160)  0           batch_normalization_42[0][0]     
__________________________________________________________________________________________________
activation_47 (Activation)      (None, 17, 17, 160)  0           batch_normalization_47[0][0]     
__________________________________________________________________________________________________
average_pooling2d_4 (AveragePoo (None, 17, 17, 768)  0           mixed4[0][0]                     
__________________________________________________________________________________________________
conv2d_40 (Conv2D)              (None, 17, 17, 192)  147456      mixed4[0][0]                     
__________________________________________________________________________________________________
conv2d_43 (Conv2D)              (None, 17, 17, 192)  215040      activation_42[0][0]              
__________________________________________________________________________________________________
conv2d_48 (Conv2D)              (None, 17, 17, 192)  215040      activation_47[0][0]              
__________________________________________________________________________________________________
conv2d_49 (Conv2D)              (None, 17, 17, 192)  147456      average_pooling2d_4[0][0]        
__________________________________________________________________________________________________
batch_normalization_40 (BatchNo (None, 17, 17, 192)  576         conv2d_40[0][0]                  
__________________________________________________________________________________________________
batch_normalization_43 (BatchNo (None, 17, 17, 192)  576         conv2d_43[0][0]                  
__________________________________________________________________________________________________
batch_normalization_48 (BatchNo (None, 17, 17, 192)  576         conv2d_48[0][0]                  
__________________________________________________________________________________________________
batch_normalization_49 (BatchNo (None, 17, 17, 192)  576         conv2d_49[0][0]                  
__________________________________________________________________________________________________
activation_40 (Activation)      (None, 17, 17, 192)  0           batch_normalization_40[0][0]     
__________________________________________________________________________________________________
activation_43 (Activation)      (None, 17, 17, 192)  0           batch_normalization_43[0][0]     
__________________________________________________________________________________________________
activation_48 (Activation)      (None, 17, 17, 192)  0           batch_normalization_48[0][0]     
__________________________________________________________________________________________________
activation_49 (Activation)      (None, 17, 17, 192)  0           batch_normalization_49[0][0]     
__________________________________________________________________________________________________
mixed5 (Concatenate)            (None, 17, 17, 768)  0           activation_40[0][0]              
                                                                 activation_43[0][0]              
                                                                 activation_48[0][0]              
                                                                 activation_49[0][0]              
__________________________________________________________________________________________________
conv2d_54 (Conv2D)              (None, 17, 17, 160)  122880      mixed5[0][0]                     
__________________________________________________________________________________________________
batch_normalization_54 (BatchNo (None, 17, 17, 160)  480         conv2d_54[0][0]                  
__________________________________________________________________________________________________
activation_54 (Activation)      (None, 17, 17, 160)  0           batch_normalization_54[0][0]     
__________________________________________________________________________________________________
conv2d_55 (Conv2D)              (None, 17, 17, 160)  179200      activation_54[0][0]              
__________________________________________________________________________________________________
batch_normalization_55 (BatchNo (None, 17, 17, 160)  480         conv2d_55[0][0]                  
__________________________________________________________________________________________________
activation_55 (Activation)      (None, 17, 17, 160)  0           batch_normalization_55[0][0]     
__________________________________________________________________________________________________
conv2d_51 (Conv2D)              (None, 17, 17, 160)  122880      mixed5[0][0]                     
__________________________________________________________________________________________________
conv2d_56 (Conv2D)              (None, 17, 17, 160)  179200      activation_55[0][0]              
__________________________________________________________________________________________________
batch_normalization_51 (BatchNo (None, 17, 17, 160)  480         conv2d_51[0][0]                  
__________________________________________________________________________________________________
batch_normalization_56 (BatchNo (None, 17, 17, 160)  480         conv2d_56[0][0]                  
__________________________________________________________________________________________________
activation_51 (Activation)      (None, 17, 17, 160)  0           batch_normalization_51[0][0]     
__________________________________________________________________________________________________
activation_56 (Activation)      (None, 17, 17, 160)  0           batch_normalization_56[0][0]     
__________________________________________________________________________________________________
conv2d_52 (Conv2D)              (None, 17, 17, 160)  179200      activation_51[0][0]              
__________________________________________________________________________________________________
conv2d_57 (Conv2D)              (None, 17, 17, 160)  179200      activation_56[0][0]              
__________________________________________________________________________________________________
batch_normalization_52 (BatchNo (None, 17, 17, 160)  480         conv2d_52[0][0]                  
__________________________________________________________________________________________________
batch_normalization_57 (BatchNo (None, 17, 17, 160)  480         conv2d_57[0][0]                  
__________________________________________________________________________________________________
activation_52 (Activation)      (None, 17, 17, 160)  0           batch_normalization_52[0][0]     
__________________________________________________________________________________________________
activation_57 (Activation)      (None, 17, 17, 160)  0           batch_normalization_57[0][0]     
__________________________________________________________________________________________________
average_pooling2d_5 (AveragePoo (None, 17, 17, 768)  0           mixed5[0][0]                     
__________________________________________________________________________________________________
conv2d_50 (Conv2D)              (None, 17, 17, 192)  147456      mixed5[0][0]                     
__________________________________________________________________________________________________
conv2d_53 (Conv2D)              (None, 17, 17, 192)  215040      activation_52[0][0]              
__________________________________________________________________________________________________
conv2d_58 (Conv2D)              (None, 17, 17, 192)  215040      activation_57[0][0]              
__________________________________________________________________________________________________
conv2d_59 (Conv2D)              (None, 17, 17, 192)  147456      average_pooling2d_5[0][0]        
__________________________________________________________________________________________________
batch_normalization_50 (BatchNo (None, 17, 17, 192)  576         conv2d_50[0][0]                  
__________________________________________________________________________________________________
batch_normalization_53 (BatchNo (None, 17, 17, 192)  576         conv2d_53[0][0]                  
__________________________________________________________________________________________________
batch_normalization_58 (BatchNo (None, 17, 17, 192)  576         conv2d_58[0][0]                  
__________________________________________________________________________________________________
batch_normalization_59 (BatchNo (None, 17, 17, 192)  576         conv2d_59[0][0]                  
__________________________________________________________________________________________________
activation_50 (Activation)      (None, 17, 17, 192)  0           batch_normalization_50[0][0]     
__________________________________________________________________________________________________
activation_53 (Activation)      (None, 17, 17, 192)  0           batch_normalization_53[0][0]     
__________________________________________________________________________________________________
activation_58 (Activation)      (None, 17, 17, 192)  0           batch_normalization_58[0][0]     
__________________________________________________________________________________________________
activation_59 (Activation)      (None, 17, 17, 192)  0           batch_normalization_59[0][0]     
__________________________________________________________________________________________________
mixed6 (Concatenate)            (None, 17, 17, 768)  0           activation_50[0][0]              
                                                                 activation_53[0][0]              
                                                                 activation_58[0][0]              
                                                                 activation_59[0][0]              
__________________________________________________________________________________________________
conv2d_64 (Conv2D)              (None, 17, 17, 192)  147456      mixed6[0][0]                     
__________________________________________________________________________________________________
batch_normalization_64 (BatchNo (None, 17, 17, 192)  576         conv2d_64[0][0]                  
__________________________________________________________________________________________________
activation_64 (Activation)      (None, 17, 17, 192)  0           batch_normalization_64[0][0]     
__________________________________________________________________________________________________
conv2d_65 (Conv2D)              (None, 17, 17, 192)  258048      activation_64[0][0]              
__________________________________________________________________________________________________
batch_normalization_65 (BatchNo (None, 17, 17, 192)  576         conv2d_65[0][0]                  
__________________________________________________________________________________________________
activation_65 (Activation)      (None, 17, 17, 192)  0           batch_normalization_65[0][0]     
__________________________________________________________________________________________________
conv2d_61 (Conv2D)              (None, 17, 17, 192)  147456      mixed6[0][0]                     
__________________________________________________________________________________________________
conv2d_66 (Conv2D)              (None, 17, 17, 192)  258048      activation_65[0][0]              
__________________________________________________________________________________________________
batch_normalization_61 (BatchNo (None, 17, 17, 192)  576         conv2d_61[0][0]                  
__________________________________________________________________________________________________
batch_normalization_66 (BatchNo (None, 17, 17, 192)  576         conv2d_66[0][0]                  
__________________________________________________________________________________________________
activation_61 (Activation)      (None, 17, 17, 192)  0           batch_normalization_61[0][0]     
__________________________________________________________________________________________________
activation_66 (Activation)      (None, 17, 17, 192)  0           batch_normalization_66[0][0]     
__________________________________________________________________________________________________
conv2d_62 (Conv2D)              (None, 17, 17, 192)  258048      activation_61[0][0]              
__________________________________________________________________________________________________
conv2d_67 (Conv2D)              (None, 17, 17, 192)  258048      activation_66[0][0]              
__________________________________________________________________________________________________
batch_normalization_62 (BatchNo (None, 17, 17, 192)  576         conv2d_62[0][0]                  
__________________________________________________________________________________________________
batch_normalization_67 (BatchNo (None, 17, 17, 192)  576         conv2d_67[0][0]                  
__________________________________________________________________________________________________
activation_62 (Activation)      (None, 17, 17, 192)  0           batch_normalization_62[0][0]     
__________________________________________________________________________________________________
activation_67 (Activation)      (None, 17, 17, 192)  0           batch_normalization_67[0][0]     
__________________________________________________________________________________________________
average_pooling2d_6 (AveragePoo (None, 17, 17, 768)  0           mixed6[0][0]                     
__________________________________________________________________________________________________
conv2d_60 (Conv2D)              (None, 17, 17, 192)  147456      mixed6[0][0]                     
__________________________________________________________________________________________________
conv2d_63 (Conv2D)              (None, 17, 17, 192)  258048      activation_62[0][0]              
__________________________________________________________________________________________________
conv2d_68 (Conv2D)              (None, 17, 17, 192)  258048      activation_67[0][0]              
__________________________________________________________________________________________________
conv2d_69 (Conv2D)              (None, 17, 17, 192)  147456      average_pooling2d_6[0][0]        
__________________________________________________________________________________________________
batch_normalization_60 (BatchNo (None, 17, 17, 192)  576         conv2d_60[0][0]                  
__________________________________________________________________________________________________
batch_normalization_63 (BatchNo (None, 17, 17, 192)  576         conv2d_63[0][0]                  
__________________________________________________________________________________________________
batch_normalization_68 (BatchNo (None, 17, 17, 192)  576         conv2d_68[0][0]                  
__________________________________________________________________________________________________
batch_normalization_69 (BatchNo (None, 17, 17, 192)  576         conv2d_69[0][0]                  
__________________________________________________________________________________________________
activation_60 (Activation)      (None, 17, 17, 192)  0           batch_normalization_60[0][0]     
__________________________________________________________________________________________________
activation_63 (Activation)      (None, 17, 17, 192)  0           batch_normalization_63[0][0]     
__________________________________________________________________________________________________
activation_68 (Activation)      (None, 17, 17, 192)  0           batch_normalization_68[0][0]     
__________________________________________________________________________________________________
activation_69 (Activation)      (None, 17, 17, 192)  0           batch_normalization_69[0][0]     
__________________________________________________________________________________________________
mixed7 (Concatenate)            (None, 17, 17, 768)  0           activation_60[0][0]              
                                                                 activation_63[0][0]              
                                                                 activation_68[0][0]              
                                                                 activation_69[0][0]              
__________________________________________________________________________________________________
conv2d_72 (Conv2D)              (None, 17, 17, 192)  147456      mixed7[0][0]                     
__________________________________________________________________________________________________
batch_normalization_72 (BatchNo (None, 17, 17, 192)  576         conv2d_72[0][0]                  
__________________________________________________________________________________________________
activation_72 (Activation)      (None, 17, 17, 192)  0           batch_normalization_72[0][0]     
__________________________________________________________________________________________________
conv2d_73 (Conv2D)              (None, 17, 17, 192)  258048      activation_72[0][0]              
__________________________________________________________________________________________________
batch_normalization_73 (BatchNo (None, 17, 17, 192)  576         conv2d_73[0][0]                  
__________________________________________________________________________________________________
activation_73 (Activation)      (None, 17, 17, 192)  0           batch_normalization_73[0][0]     
__________________________________________________________________________________________________
conv2d_70 (Conv2D)              (None, 17, 17, 192)  147456      mixed7[0][0]                     
__________________________________________________________________________________________________
conv2d_74 (Conv2D)              (None, 17, 17, 192)  258048      activation_73[0][0]              
__________________________________________________________________________________________________
batch_normalization_70 (BatchNo (None, 17, 17, 192)  576         conv2d_70[0][0]                  
__________________________________________________________________________________________________
batch_normalization_74 (BatchNo (None, 17, 17, 192)  576         conv2d_74[0][0]                  
__________________________________________________________________________________________________
activation_70 (Activation)      (None, 17, 17, 192)  0           batch_normalization_70[0][0]     
__________________________________________________________________________________________________
activation_74 (Activation)      (None, 17, 17, 192)  0           batch_normalization_74[0][0]     
__________________________________________________________________________________________________
conv2d_71 (Conv2D)              (None, 8, 8, 320)    552960      activation_70[0][0]              
__________________________________________________________________________________________________
conv2d_75 (Conv2D)              (None, 8, 8, 192)    331776      activation_74[0][0]              
__________________________________________________________________________________________________
batch_normalization_71 (BatchNo (None, 8, 8, 320)    960         conv2d_71[0][0]                  
__________________________________________________________________________________________________
batch_normalization_75 (BatchNo (None, 8, 8, 192)    576         conv2d_75[0][0]                  
__________________________________________________________________________________________________
activation_71 (Activation)      (None, 8, 8, 320)    0           batch_normalization_71[0][0]     
__________________________________________________________________________________________________
activation_75 (Activation)      (None, 8, 8, 192)    0           batch_normalization_75[0][0]     
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D)  (None, 8, 8, 768)    0           mixed7[0][0]                     
__________________________________________________________________________________________________
mixed8 (Concatenate)            (None, 8, 8, 1280)   0           activation_71[0][0]              
                                                                 activation_75[0][0]              
                                                                 max_pooling2d_3[0][0]            
__________________________________________________________________________________________________
conv2d_80 (Conv2D)              (None, 8, 8, 448)    573440      mixed8[0][0]                     
__________________________________________________________________________________________________
batch_normalization_80 (BatchNo (None, 8, 8, 448)    1344        conv2d_80[0][0]                  
__________________________________________________________________________________________________
activation_80 (Activation)      (None, 8, 8, 448)    0           batch_normalization_80[0][0]     
__________________________________________________________________________________________________
conv2d_77 (Conv2D)              (None, 8, 8, 384)    491520      mixed8[0][0]                     
__________________________________________________________________________________________________
conv2d_81 (Conv2D)              (None, 8, 8, 384)    1548288     activation_80[0][0]              
__________________________________________________________________________________________________
batch_normalization_77 (BatchNo (None, 8, 8, 384)    1152        conv2d_77[0][0]                  
__________________________________________________________________________________________________
batch_normalization_81 (BatchNo (None, 8, 8, 384)    1152        conv2d_81[0][0]                  
__________________________________________________________________________________________________
activation_77 (Activation)      (None, 8, 8, 384)    0           batch_normalization_77[0][0]     
__________________________________________________________________________________________________
activation_81 (Activation)      (None, 8, 8, 384)    0           batch_normalization_81[0][0]     
__________________________________________________________________________________________________
conv2d_78 (Conv2D)              (None, 8, 8, 384)    442368      activation_77[0][0]              
__________________________________________________________________________________________________
conv2d_79 (Conv2D)              (None, 8, 8, 384)    442368      activation_77[0][0]              
__________________________________________________________________________________________________
conv2d_82 (Conv2D)              (None, 8, 8, 384)    442368      activation_81[0][0]              
__________________________________________________________________________________________________
conv2d_83 (Conv2D)              (None, 8, 8, 384)    442368      activation_81[0][0]              
__________________________________________________________________________________________________
average_pooling2d_7 (AveragePoo (None, 8, 8, 1280)   0           mixed8[0][0]                     
__________________________________________________________________________________________________
conv2d_76 (Conv2D)              (None, 8, 8, 320)    409600      mixed8[0][0]                     
__________________________________________________________________________________________________
batch_normalization_78 (BatchNo (None, 8, 8, 384)    1152        conv2d_78[0][0]                  
__________________________________________________________________________________________________
batch_normalization_79 (BatchNo (None, 8, 8, 384)    1152        conv2d_79[0][0]                  
__________________________________________________________________________________________________
batch_normalization_82 (BatchNo (None, 8, 8, 384)    1152        conv2d_82[0][0]                  
__________________________________________________________________________________________________
batch_normalization_83 (BatchNo (None, 8, 8, 384)    1152        conv2d_83[0][0]                  
__________________________________________________________________________________________________
conv2d_84 (Conv2D)              (None, 8, 8, 192)    245760      average_pooling2d_7[0][0]        
__________________________________________________________________________________________________
batch_normalization_76 (BatchNo (None, 8, 8, 320)    960         conv2d_76[0][0]                  
__________________________________________________________________________________________________
activation_78 (Activation)      (None, 8, 8, 384)    0           batch_normalization_78[0][0]     
__________________________________________________________________________________________________
activation_79 (Activation)      (None, 8, 8, 384)    0           batch_normalization_79[0][0]     
__________________________________________________________________________________________________
activation_82 (Activation)      (None, 8, 8, 384)    0           batch_normalization_82[0][0]     
__________________________________________________________________________________________________
activation_83 (Activation)      (None, 8, 8, 384)    0           batch_normalization_83[0][0]     
__________________________________________________________________________________________________
batch_normalization_84 (BatchNo (None, 8, 8, 192)    576         conv2d_84[0][0]                  
__________________________________________________________________________________________________
activation_76 (Activation)      (None, 8, 8, 320)    0           batch_normalization_76[0][0]     
__________________________________________________________________________________________________
mixed9_0 (Concatenate)          (None, 8, 8, 768)    0           activation_78[0][0]              
                                                                 activation_79[0][0]              
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 8, 8, 768)    0           activation_82[0][0]              
                                                                 activation_83[0][0]              
__________________________________________________________________________________________________
activation_84 (Activation)      (None, 8, 8, 192)    0           batch_normalization_84[0][0]     
__________________________________________________________________________________________________
mixed9 (Concatenate)            (None, 8, 8, 2048)   0           activation_76[0][0]              
                                                                 mixed9_0[0][0]                   
                                                                 concatenate[0][0]                
                                                                 activation_84[0][0]              
__________________________________________________________________________________________________
conv2d_89 (Conv2D)              (None, 8, 8, 448)    917504      mixed9[0][0]                     
__________________________________________________________________________________________________
batch_normalization_89 (BatchNo (None, 8, 8, 448)    1344        conv2d_89[0][0]                  
__________________________________________________________________________________________________
activation_89 (Activation)      (None, 8, 8, 448)    0           batch_normalization_89[0][0]     
__________________________________________________________________________________________________
conv2d_86 (Conv2D)              (None, 8, 8, 384)    786432      mixed9[0][0]                     
__________________________________________________________________________________________________
conv2d_90 (Conv2D)              (None, 8, 8, 384)    1548288     activation_89[0][0]              
__________________________________________________________________________________________________
batch_normalization_86 (BatchNo (None, 8, 8, 384)    1152        conv2d_86[0][0]                  
__________________________________________________________________________________________________
batch_normalization_90 (BatchNo (None, 8, 8, 384)    1152        conv2d_90[0][0]                  
__________________________________________________________________________________________________
activation_86 (Activation)      (None, 8, 8, 384)    0           batch_normalization_86[0][0]     
__________________________________________________________________________________________________
activation_90 (Activation)      (None, 8, 8, 384)    0           batch_normalization_90[0][0]     
__________________________________________________________________________________________________
conv2d_87 (Conv2D)              (None, 8, 8, 384)    442368      activation_86[0][0]              
__________________________________________________________________________________________________
conv2d_88 (Conv2D)              (None, 8, 8, 384)    442368      activation_86[0][0]              
__________________________________________________________________________________________________
conv2d_91 (Conv2D)              (None, 8, 8, 384)    442368      activation_90[0][0]              
__________________________________________________________________________________________________
conv2d_92 (Conv2D)              (None, 8, 8, 384)    442368      activation_90[0][0]              
__________________________________________________________________________________________________
average_pooling2d_8 (AveragePoo (None, 8, 8, 2048)   0           mixed9[0][0]                     
__________________________________________________________________________________________________
conv2d_85 (Conv2D)              (None, 8, 8, 320)    655360      mixed9[0][0]                     
__________________________________________________________________________________________________
batch_normalization_87 (BatchNo (None, 8, 8, 384)    1152        conv2d_87[0][0]                  
__________________________________________________________________________________________________
batch_normalization_88 (BatchNo (None, 8, 8, 384)    1152        conv2d_88[0][0]                  
__________________________________________________________________________________________________
batch_normalization_91 (BatchNo (None, 8, 8, 384)    1152        conv2d_91[0][0]                  
__________________________________________________________________________________________________
batch_normalization_92 (BatchNo (None, 8, 8, 384)    1152        conv2d_92[0][0]                  
__________________________________________________________________________________________________
conv2d_93 (Conv2D)              (None, 8, 8, 192)    393216      average_pooling2d_8[0][0]        
__________________________________________________________________________________________________
batch_normalization_85 (BatchNo (None, 8, 8, 320)    960         conv2d_85[0][0]                  
__________________________________________________________________________________________________
activation_87 (Activation)      (None, 8, 8, 384)    0           batch_normalization_87[0][0]     
__________________________________________________________________________________________________
activation_88 (Activation)      (None, 8, 8, 384)    0           batch_normalization_88[0][0]     
__________________________________________________________________________________________________
activation_91 (Activation)      (None, 8, 8, 384)    0           batch_normalization_91[0][0]     
__________________________________________________________________________________________________
activation_92 (Activation)      (None, 8, 8, 384)    0           batch_normalization_92[0][0]     
__________________________________________________________________________________________________
batch_normalization_93 (BatchNo (None, 8, 8, 192)    576         conv2d_93[0][0]                  
__________________________________________________________________________________________________
activation_85 (Activation)      (None, 8, 8, 320)    0           batch_normalization_85[0][0]     
__________________________________________________________________________________________________
mixed9_1 (Concatenate)          (None, 8, 8, 768)    0           activation_87[0][0]              
                                                                 activation_88[0][0]              
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 8, 8, 768)    0           activation_91[0][0]              
                                                                 activation_92[0][0]              
__________________________________________________________________________________________________
activation_93 (Activation)      (None, 8, 8, 192)    0           batch_normalization_93[0][0]     
__________________________________________________________________________________________________
mixed10 (Concatenate)           (None, 8, 8, 2048)   0           activation_85[0][0]              
                                                                 mixed9_1[0][0]                   
                                                                 concatenate_1[0][0]              
                                                                 activation_93[0][0]              
__________________________________________________________________________________________________
avg_pool (GlobalAveragePooling2 (None, 2048)         0           mixed10[0][0]                    
__________________________________________________________________________________________________
predictions (Dense)             (None, 1000)         2049000     avg_pool[0][0]                   
==================================================================================================
Total params: 23,851,784
Trainable params: 23,817,352
Non-trainable params: 34,432
_________________________________________________________

image-20220813110720019

References

   Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, & Zbigniew Wojna (2016). Rethinking the Inception Architecture for Computer Vision computer vision and pattern recognition.

  精读人工智能经典论文

目录
相关文章
|
4月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
|
4月前
|
机器学习/深度学习 计算机视觉
Inception模型及其实现
【7月更文挑战第26天】Inception模型及其实现。
59 7
|
6月前
|
算法框架/工具
使用MobileNetV3的PSPNet网络结构
使用MobileNetV3的PSPNet网络结构
37 1
|
机器学习/深度学习 数据挖掘 PyTorch
图像分类经典神经网络大总结(AlexNet、VGG 、GoogLeNet 、ResNet、 DenseNet、SENet、ResNeXt )
图像分类经典神经网络大总结(AlexNet、VGG 、GoogLeNet 、ResNet、 DenseNet、SENet、ResNeXt )
5595 1
图像分类经典神经网络大总结(AlexNet、VGG 、GoogLeNet 、ResNet、 DenseNet、SENet、ResNeXt )
|
机器学习/深度学习 并行计算 PyTorch
Swin Transformer实战:使用 Swin Transformer实现图像分类
目标检测刷到58.7 AP! 实例分割刷到51.1 Mask AP! 语义分割在ADE20K上刷到53.5 mIoU! 今年,微软亚洲研究院的Swin Transformer又开启了吊打CNN的模式,在速度和精度上都有很大的提高。这篇文章带你实现Swin Transformer图像分类。
9766 0
Swin Transformer实战:使用 Swin Transformer实现图像分类
|
机器学习/深度学习 人工智能 搜索推荐
DenseNet、MobileNet、DPN…你都掌握了吗?一文总结图像分类必备经典模型(四)
DenseNet、MobileNet、DPN…你都掌握了吗?一文总结图像分类必备经典模型
222 0
|
机器学习/深度学习 编解码 PyTorch
DenseNet、MobileNet、DPN…你都掌握了吗?一文总结图像分类必备经典模型(二)
DenseNet、MobileNet、DPN…你都掌握了吗?一文总结图像分类必备经典模型(二)
196 0
|
机器学习/深度学习 PyTorch TensorFlow
DenseNet、MobileNet、DPN…你都掌握了吗?一文总结图像分类必备经典模型(三)
DenseNet、MobileNet、DPN…你都掌握了吗?一文总结图像分类必备经典模型
217 0
|
缓存 计算机视觉
R-CNN:使用自己的数据训练 Faster R-CNN 的 ResNet-50 模型
上次使用 Faster R-CNN 训练了一个 VGG-16 的网络,为了再提升识别的准确率,利用 ResNet 网络在同样的数据上面训练了多一次。
611 0