解密MySQL 8.0 multi-valued indexes

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 解密MySQL 8.0 multi-valued indexes

什么是multi-valued index

MySQL 8.0.17起,InnoDB引擎新增了对JSON数据类型的多值索引,即multi-valued index。它的作用是针对JSON数据类型中,同一条记录有多个值的情况,加上索引后,根据这些值条件查询时,也可以指向同一条数据。

假设有一条数据是 { "user":"Bob","zipcode":[94477,94536]},意为Bob这位用户,他拥有多个邮编"94477"和"94536",这时候如果我们想对zipcode属性加索引,就可以选择使用多值索引了,在以往是不支持这个方式的。可以像下面这样创建索引:(建议在PC端或横版观看,下同)

[root@yejr.me]> CREATE INDEX zips ON t1((
CAST(data->'$.zipcode' AS UNSIGNED ARRAY)));

在本例中的多值索引实际上是采用基于CAST()的函数索引,CAST()转换后选择的数据类型除了BINARY和JSON,其他都可以支持。目前multi-valued index只针对InnoDB表中的JSON数据类型,其余场景还不支持。

multi-valued index怎么用

我们来看下一个JSON列怎么创建multi-valued index。

# 创建测试表

[root@yejr.me]> CREATE TABLE customers (
id INT NOT NULL AUTO_INCREMENT,
custinfo JSON,
primary key(id)
)engine=innodb;

# 写入5条测试数据
[root@yejr.me]> INSERT INTO customers(custinfo) VALUES
('{"user":"Jack","user_id":37,"zipcode":[94582,94536]}'),
('{"user":"Jill","user_id":22,"zipcode":[94568,94507,94582]}'),
('{"user":"Bob","user_id":31,"zipcode":[94477,94507]}'),
('{"user":"Mary","user_id":72,"zipcode":[94536]}'),
('{"user":"Ted","user_id":56,"zipcode":[94507,94582]}');

# 执行查询,此时还没创建索引,需要全表扫描
[root@yejr.me]> DESC SELECT * FROM customers WHERE
JSON_CONTAINS(custinfo->'$.zipcode',
CAST('[94507,94582]' AS JSON))\G
1. row
...
type: ALL
possible_keys: NULL
key: NULL
...
rows: 5
filtered: 100.00
Extra: Using where

# 创建multi-valued index
[root@yejr.me]> ALTER TABLE customers ADD INDEX
zips((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));

# 查看新的执行计划,可以走索引
[root@yejr.me]> DESC SELECT * FROM customers WHERE
JSON_CONTAINS(custinfo->'$.zipcode',
CAST('[94507,94582]' AS JSON))\G
1. row
...
type: range
possible_keys: zips
key: zips
key_len: 9
ref: NULL
rows: 6
filtered: 100.00
Extra: Using where; Using MRR


multi-valued index底层是怎么存储的

知道multi-valued index怎么用之后,再来看下它底层是怎么存储索引数据的。以上面的customers表为例,我们利用innblock和bcview工具来确认InnoDB底层是怎么存储的。

1. 先找到辅助索引page

先用innblock工具确认辅助索引zips在哪个page上。

[root@yejr.me]# innblock customers.ibd scan 16
...
===INDEX_ID:56555
level0 total block is (1)
block_no: 4,level: 0|*|
===INDEX_ID:56556
level0 total block is (1)
block_no: 5,level: 0|*|

由于数据量很小,这两个索引都只需要一个page就能放下,辅助索引keys存储在5号page上。

2. 扫描确认辅助索引数据

继续用innblock扫描辅助索引,确认有多少条数据。

[root@yejr.me]# innblock customers.ibd 5 16
...
-----Total used rows:12 used rows list(logic):
(1) INFIMUM record offset:99 heapno:0 n_owned 1,delflag:N minflag:0 rectype:2
(2) normal record offset:216 heapno:7 n_owned 0,delflag:N minflag:0 rectype:0
(3) normal record offset:162 heapno:4 n_owned 0,delflag:N minflag:0 rectype:0
(4) normal record offset:234 heapno:8 n_owned 0,delflag:N minflag:0 rectype:0
(5) normal record offset:270 heapno:10 n_owned 0,delflag:N minflag:0 rectype:0
(6) normal record offset:126 heapno:2 n_owned 5,delflag:N minflag:0 rectype:0
(7) normal record offset:252 heapno:9 n_owned 0,delflag:N minflag:0 rectype:0
(8) normal record offset:180 heapno:5 n_owned 0,delflag:N minflag:0 rectype:0
(9) normal record offset:144 heapno:3 n_owned 0,delflag:N minflag:0 rectype:0
(10) normal record offset:198 heapno:6 n_owned 0,delflag:N minflag:0 rectype:0
(11) normal record offset:288 heapno:11 n_owned 0,delflag:N minflag:0 rectype:0
(12) SUPREMUM record offset:112 heapno:1 n_owned 6,delflag:N minflag:0 rectype:3
-----Total used rows:12 used rows list(phy):
(1) INFIMUM record offset:99 heapno:0 n_owned 1,delflag:N minflag:0 rectype:2
(2) SUPREMUM record offset:112 heapno:1 n_owned 6,delflag:N minflag:0 rectype:3
(3) normal record offset:126 heapno:2 n_owned 5,delflag:N minflag:0 rectype:0
(4) normal record offset:144 heapno:3 n_owned 0,delflag:N minflag:0 rectype:0
(5) normal record offset:162 heapno:4 n_owned 0,delflag:N minflag:0 rectype:0
(6) normal record offset:180 heapno:5 n_owned 0,delflag:N minflag:0 rectype:0
(7) normal record offset:198 heapno:6 n_owned 0,delflag:N minflag:0 rectype:0
(8) normal record offset:216 heapno:7 n_owned 0,delflag:N minflag:0 rectype:0
(9) normal record offset:234 heapno:8 n_owned 0,delflag:N minflag:0 rectype:0
(10) normal record offset:252 heapno:9 n_owned 0,delflag:N minflag:0 rectype:0
(11) normal record offset:270 heapno:10 n_owned 0,delflag:N minflag:0 rectype:0
(12) normal record offset:288 heapno:11 n_owned 0,delflag:N minflag:0 rectype:0
...

可以看到,总共有12条记录,除去INFIMUM、SUPREMUM这两条虚拟记录,共有10条物理记录。为什么是10条记录,而不是5条记录呢,这是因为multi-valued index实际上是把每个zipcode value对都视为一天索引记录。再看一眼表数据:

[root@yejr.me]> select id, custinfo->'$.zipcode' from customers;
+----+-----------------------+
| id | custinfo->'$.zipcode' |
+----+-----------------------+
| 1 | [94582, 94536] |
| 2 | [94568, 94507, 94582] |
| 3 | [94477, 94507] |
| 4 | [94536] |
| 5 | [94507, 94582] |
+----+-----------------------+

上面写入的5条数据中,共有10个zipcode,虽然有些zipcode是相同的,但他们对应的id值不同,因此也要分别记录索引。也就是说, "zipcode":[94582,94536]这里的两个整型数据,实际上在索引树中,是两条独立的数据,只不过他们都分别指向id=1这条数据。那么,这个索引实际上存储的顺序就应该是下面这样才对:

+---------+------+
| zipcode | id |
+---------+------+
| 94477 | 3 |
| 94507 | 2 |
| 94507 | 3 |
| 94507 | 5 |
| 94536 | 1 |
| 94536 | 4 |
| 94568 | 2 |
| 94582 | 1 |
| 94582 | 2 |
| 94582 | 5 |
+---------+------+

提醒下,由于InnoDB的index extensions特性,辅助索引存储时总是包含聚集索引列值,若有两个值相同的辅助索引值,则会根据其聚集索引列值进行排序。当然了,以上也只是我们的推测,并不能实锤,直接去核对源码好像有点难度。好在可以用另一个神器bcview来查看底层数据。这里之所以没有采用innodb_space工具,是因为它对MySQL 5.7以上的版本兼容性不够好,有些场景下解析出来的可能是错误数据。

3. 用bcview工具确认结论

按照推测,zips这个索引按照逻辑顺序的话,第一条索引记录是 [94477,3]才对,上面看到第一条逻辑记录的偏移量是216,我们来看下。

# 从上面扫描结果可知,一条记录总消耗存储空间是18字节
bcview customers.ibd 16 216 18
...
# 这里为了排版方便,我给人为折行了
current block:00000005 --对应的pageno=5
--Offset:00216 --偏移量216
--cnt bytes:18 --读取18字节
--data is:000000000001710d80000003000000400024

来分析下这条数据,要拆分成几段来看。

000000000001710d,8字节(BIGINT),十六进制转成十进制,就是 94477
80000003,4字节(INT),对应十进制3,也就是id=3
000000400024,record headder,6字节,忽略

这表明推测结果是正确的。

另外,如果按照物理写入顺序,则第一条数据id=1这条数据:

+----+-----------------------+
| id | custinfo->'$.zipcode' |
+----+-----------------------+
| 1 | [94582, 94536] |
+----+-----------------------+

这条物理记录,共产生两条辅助索引记录,我们一次性扫描出来(36字节):

bcview customers.ibd 16 126 36
...
current block:00000005
--Offset:00126
--cnt bytes:36
--data is:000000000001714880000001000000180036000000000001717680000001000000200048
...

同上,解析结果见下(存储顺序要反着看):

0000000000017148 => 94536
80000001 => id=1
000000180036
0000000000017176 => 94582
80000001 => id=1
000000200048

可以看到,确实是把JSON里的多个值拆开来,对应到聚集索引后存储每个键值。至此,我们完全搞清楚了multi-valued index的底层存储结构。

            </div>
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
存储 JSON 关系型数据库
解密MySQL 8.0 multi-valued indexes
解密MySQL 8.0 multi-valued indexes
|
MySQL 关系型数据库 测试技术
MySQL 8.0 Invisible Indexes 和 RDS 5.6 Invisible Indexes介绍
mysql 在8.0的时候支持了不可见索引,称为隐式索引 索引默认是可以的,控制索引的可见性可以使用Invisible,visible关键字作为create table,create index,alter table 来进行定义。
20839 0
|
存储 移动开发 JSON
新功能初探 | MySQL 8.0 Multi-Valued Indexes功能简述
本文主要介绍下8.0.17新引入的功能multi-valued index
3054 0
|
27天前
|
存储 SQL 关系型数据库
Mysql学习笔记(二):数据库命令行代码总结
这篇文章是关于MySQL数据库命令行操作的总结,包括登录、退出、查看时间与版本、数据库和数据表的基本操作(如创建、删除、查看)、数据的增删改查等。它还涉及了如何通过SQL语句进行条件查询、模糊查询、范围查询和限制查询,以及如何进行表结构的修改。这些内容对于初学者来说非常实用,是学习MySQL数据库管理的基础。
104 6
|
24天前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
57 3
Mysql(4)—数据库索引
|
27天前
|
SQL Ubuntu 关系型数据库
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
本文为MySQL学习笔记,介绍了数据库的基本概念,包括行、列、主键等,并解释了C/S和B/S架构以及SQL语言的分类。接着,指导如何在Windows和Ubuntu系统上安装MySQL,并提供了启动、停止和重启服务的命令。文章还涵盖了Navicat的使用,包括安装、登录和新建表格等步骤。最后,介绍了MySQL中的数据类型和字段约束,如主键、外键、非空和唯一等。
62 3
Mysql学习笔记(一):数据库详细介绍以及Navicat简单使用
|
10天前
|
关系型数据库 MySQL Linux
在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。
本文介绍了在 CentOS 7 中通过编译源码方式安装 MySQL 数据库的详细步骤,包括准备工作、下载源码、编译安装、配置 MySQL 服务、登录设置等。同时,文章还对比了编译源码安装与使用 RPM 包安装的优缺点,帮助读者根据需求选择最合适的方法。通过具体案例,展示了编译源码安装的灵活性和定制性。
46 2
|
13天前
|
存储 关系型数据库 MySQL
MySQL vs. PostgreSQL:选择适合你的开源数据库
在众多开源数据库中,MySQL和PostgreSQL无疑是最受欢迎的两个。它们都有着强大的功能、广泛的社区支持和丰富的生态系统。然而,它们在设计理念、性能特点、功能特性等方面存在着显著的差异。本文将从这三个方面对MySQL和PostgreSQL进行比较,以帮助您选择更适合您需求的开源数据库。
54 4
|
18天前
|
存储 关系型数据库 MySQL
如何在MySQL中创建数据库?
【10月更文挑战第16天】如何在MySQL中创建数据库?
|
22天前
|
SQL Oracle 关系型数据库
安装最新 MySQL 8.0 数据库(教学用)
安装最新 MySQL 8.0 数据库(教学用)
95 4