新功能初探 | MySQL 8.0 Multi-Valued Indexes功能简述

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 本文主要介绍下8.0.17新引入的功能multi-valued index

顾名思义,索引上对于同一个Primary key, 可以建立多个二级索引项,实际上已经对array类型的基础功能做了支持,并基于array来构建二级索引。
这意味着该二级索引的记录数可以是多于聚集索引记录数的,因而该索引不可以用于通常意义的查询,只能通过特定的接口函数来使用,下面的例子里会说明。

关注公众号“阿里数据库技术”,回复“MySQL”获取相关文档。

范例

摘录自官方文档
*请左右滑动阅览

root@test 04:08:50>show create table customers\G                                                                                                                                  
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `modified` datetime DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  `custinfo` json DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `zips` ((cast(json_extract(`custinfo`,_latin1'$.zip') as unsigned array)))
) ENGINE=InnoDB AUTO_INCREMENT=6 DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

root@test 04:08:53>select * from customers;
+----+---------------------+-------------------------------------------------------------------+
| id | modified            | custinfo                                                          |
+----+---------------------+-------------------------------------------------------------------+
|  1 | 2019-08-14 16:08:50 | {"user": "Jack", "user_id": 37, "zipcode": [94582, 94536]}        |
|  2 | 2019-08-14 16:08:50 | {"user": "Jill", "user_id": 22, "zipcode": [94568, 94507, 94582]} |
|  3 | 2019-08-14 16:08:50 | {"user": "Bob", "user_id": 31, "zipcode": [94477, 94536]}         |
|  4 | 2019-08-14 16:08:50 | {"user": "Mary", "user_id": 72, "zipcode": [94536]}               |
|  5 | 2019-08-14 16:08:50 | {"user": "Ted", "user_id": 56, "zipcode": [94507, 94582]}         |
+----+---------------------+-------------------------------------------------------------------+
5 rows in set (0.00 sec)

通过如下三个函数member of, json_contains, json_overlaps可以使用到该索引

*请左右滑动阅览

root@test 04:09:00>SELECT * FROM customers WHERE 94507 MEMBER OF(custinfo->'$.zipcode');
+----+---------------------+-------------------------------------------------------------------+
| id | modified            | custinfo                                                          |
+----+---------------------+-------------------------------------------------------------------+
|  2 | 2019-08-14 16:08:50 | {"user": "Jill", "user_id": 22, "zipcode": [94568, 94507, 94582]} |
|  5 | 2019-08-14 16:08:50 | {"user": "Ted", "user_id": 56, "zipcode": [94507, 94582]}         |
+----+---------------------+-------------------------------------------------------------------+
2 rows in set (0.00 sec)

root@test 04:09:41>SELECT * FROM customers  WHERE JSON_CONTAINS(custinfo->'$.zipcode', CAST('[94507,94582]' AS JSON));
+----+---------------------+-------------------------------------------------------------------+
| id | modified            | custinfo                                                          |
+----+---------------------+-------------------------------------------------------------------+
|  2 | 2019-08-14 16:08:50 | {"user": "Jill", "user_id": 22, "zipcode": [94568, 94507, 94582]} |
|  5 | 2019-08-14 16:08:50 | {"user": "Ted", "user_id": 56, "zipcode": [94507, 94582]}         |
+----+---------------------+-------------------------------------------------------------------+
2 rows in set (0.00 sec)

root@test 04:09:54>SELECT * FROM customers   WHERE JSON_OVERLAPS(custinfo->'$.zipcode', CAST('[94507,94582]' AS JSON));
+----+---------------------+-------------------------------------------------------------------+
| id | modified            | custinfo                                                          |
+----+---------------------+-------------------------------------------------------------------+
|  1 | 2019-08-14 16:08:50 | {"user": "Jack", "user_id": 37, "zipcode": [94582, 94536]}        |
|  2 | 2019-08-14 16:08:50 | {"user": "Jill", "user_id": 22, "zipcode": [94568, 94507, 94582]} |
|  5 | 2019-08-14 16:08:50 | {"user": "Ted", "user_id": 56, "zipcode": [94507, 94582]}         |
+----+---------------------+-------------------------------------------------------------------+
3 rows in set (0.00 sec)

接口函数

multi-value index是functional index的一种实现,列的定义是一个虚拟列,值是从json column上取出来的数组。

数组上存在相同值的话,会只存储一个到索引上。支持的类型:DECIMAL, INTEGER, DATETIME,VARCHAR/CHAR。另外index上只能有一个multi-value column。
下面简单介绍下相关的接口函数

数组最大容量:

入口函数:
ha_innobase::mv_key_capacity

插入记录:

入口函数:
row_ins_sec_index_multi_value_entry
通过类Multi_value_entry_builder_insert来构建tuple, 然后调用正常的接口函数row_ins_sec_index_entry插入到二级索引中。
已经解析好,排序并去重的数据存储在结构struct multi_value_data , 指针在dfield_t::data中. multi_value_data结构也是multi-value具体值的内存表现

删除记录:

入口函数:
row_upd_del_multi_sec_index_entry
基于类Multi_value_entry_builder_normal构建tuple, 并依次从索引中删除

更新记录

入口函数:
row_upd_multi_sec_index_entry
由于可能不是所有的二级索引记录都需要更新,需要计算出diff,找出要更新的记录calc_row_difference --> innobase_get_multi_value_and_diff, 设置一个需要更新的bitmap

事务回滚

相关函数:

row_undo_ins_remove_multi_sec
row_undo_mod_upd_del_multi_sec
row_undo_mod_del_mark_multi_sec

回滚的时候通过trx_undo_rec_get_multi_value从undo log中获取multi-value column的值,通过接口Multi_value_logger::read来构建并存储到field data中

记录undo log

函数: trx_undo_store_multi_value
通过Multi_value_logger::log将multi-value的信息存储到Undo log中. 'Multi_value_logger'是一个辅助类,用于记录multi-value column的值以及如何读出来

purge 二级索引记录

入口函数:
*请左右滑动阅览

row_purge_del_mark
row_purge_upd_exist_or_extern_func
    |--> row_purge_remove_multi_sec_if_poss
    
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
6月前
|
SQL 存储 关系型数据库
MySQL功能模块探秘:数据库世界的奇妙之旅
]带你轻松愉快地探索MySQL 8.4.5的核心功能模块,从SQL引擎到存储引擎,从复制机制到插件系统,让你在欢声笑语中掌握数据库的精髓!
220 26
|
10月前
|
存储 关系型数据库 MySQL
MySQL细节优化:关闭大小写敏感功能的方法。
通过这种方法,你就可以成功关闭 MySQL 的大小写敏感功能,让你的数据库操作更加便捷。
875 19
|
10月前
|
关系型数据库 MySQL 数据库
|
自然语言处理 关系型数据库 MySQL
mysql 全文搜索功能优缺点
mysql 全文搜索功能优缺点
|
存储 关系型数据库 MySQL
基于python django 医院管理系统,多用户功能,包括管理员、用户、医生,数据库MySQL
本文介绍了一个基于Python Django框架开发的医院管理系统,该系统设计了管理员、用户和医生三个角色,具备多用户功能,并使用MySQL数据库进行数据存储和管理。
605 4
基于python django 医院管理系统,多用户功能,包括管理员、用户、医生,数据库MySQL
|
SQL 关系型数据库 MySQL
MySql5.6版本开启慢SQL功能-本次采用永久生效方式
MySql5.6版本开启慢SQL功能-本次采用永久生效方式
226 0
|
JavaScript 关系型数据库 MySQL
node连接mysql,并实现增删改查功能
【8月更文挑战第26天】node连接mysql,并实现增删改查功能
570 3
|
分布式计算 大数据 关系型数据库
MaxCompute产品使用合集之如何实现类似mysql实例中的数据库功能
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
175 8
|
关系型数据库 MySQL 存储
|
存储 负载均衡 关系型数据库
面试题MySQL问题之通过配置FastDFS提高性能如何解决
面试题MySQL问题之通过配置FastDFS提高性能如何解决
199 1

相关产品

  • 云数据库 RDS MySQL 版
  • 推荐镜像

    更多