解密MySQL 8.0 multi-valued indexes

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 解密MySQL 8.0 multi-valued indexes

什么是multi-valued index

MySQL 8.0.17起,InnoDB引擎新增了对JSON数据类型的多值索引,即multi-valued index。它的作用是针对JSON数据类型中,同一条记录有多个值的情况,加上索引后,根据这些值条件查询时,也可以指向同一条数据。

假设有一条数据是 {"user":"Bob","zipcode":[94477,94536]},意为Bob这位用户,他拥有多个邮编"94477"和"94536",这时候如果我们想对zipcode属性加索引,就可以选择使用多值索引了,在以往是不支持这个方式的。可以像下面这样创建索引:(建议在PC端或横版观看,下同)

[root@yejr.me]> CREATE INDEX zips ON t1((
CAST(data->'$.zipcode' AS UNSIGNED ARRAY)));

在本例中的多值索引实际上是采用基于CAST()的函数索引,CAST()转换后选择的数据类型除了BINARY和JSON,其他都可以支持。目前multi-valued index只针对InnoDB表中的JSON数据类型,其余场景还不支持。

multi-valued index怎么用

我们来看下一个JSON列怎么创建multi-valued index。

# 创建测试表
[root@yejr.me]> CREATE TABLE customers (
 id INT NOT NULL AUTO_INCREMENT,
 custinfo JSON,
 primary key(id)
)engine=innodb;
# 写入5条测试数据
[root@yejr.me]> INSERT INTO customers(custinfo) VALUES
('{"user":"Jack","user_id":37,"zipcode":[94582,94536]}'),
('{"user":"Jill","user_id":22,"zipcode":[94568,94507,94582]}'),
('{"user":"Bob","user_id":31,"zipcode":[94477,94507]}'),
('{"user":"Mary","user_id":72,"zipcode":[94536]}'),
('{"user":"Ted","user_id":56,"zipcode":[94507,94582]}');
# 执行查询,此时还没创建索引,需要全表扫描
[root@yejr.me]> DESC SELECT * FROM customers WHERE
JSON_CONTAINS(custinfo->'$.zipcode',
CAST('[94507,94582]' AS JSON))\G
****************** 1. row ******************
...
         type: ALL
possible_keys: NULL
          key: NULL
...
         rows: 5
     filtered: 100.00
        Extra: Using where
# 创建multi-valued index
[root@yejr.me]> ALTER TABLE customers ADD INDEX
zips((CAST(custinfo->'$.zipcode' AS UNSIGNED ARRAY)));
# 查看新的执行计划,可以走索引
[root@yejr.me]> DESC SELECT * FROM customers WHERE
JSON_CONTAINS(custinfo->'$.zipcode',
CAST('[94507,94582]' AS JSON))\G
****************** 1. row ******************
...
         type: range
possible_keys: zips
          key: zips
      key_len: 9
          ref: NULL
         rows: 6
     filtered: 100.00
        Extra: Using where; Using MRR


multi-valued index底层是怎么存储的

知道multi-valued index怎么用之后,再来看下它底层是怎么存储索引数据的。以上面的customers表为例,我们利用innblock和bcview工具来确认InnoDB底层是怎么存储的。

1. 先找到辅助索引page

先用innblock工具确认辅助索引zips在哪个page上。

[root@yejr.me]# innblock customers.ibd scan 16
...
===INDEX_ID:56555
level0 total block is (1)
block_no:         4,level:   0|*|
===INDEX_ID:56556
level0 total block is (1)
block_no:         5,level:   0|*|

由于数据量很小,这两个索引都只需要一个page就能放下,辅助索引keys存储在5号page上。

2. 扫描确认辅助索引数据

继续用innblock扫描辅助索引,确认有多少条数据。

[root@yejr.me]# innblock customers.ibd 5 16
...
-----Total used rows:12 used rows list(logic):
(1) INFIMUM record offset:99 heapno:0 n_owned 1,delflag:N minflag:0 rectype:2
(2) normal record offset:216 heapno:7 n_owned 0,delflag:N minflag:0 rectype:0
(3) normal record offset:162 heapno:4 n_owned 0,delflag:N minflag:0 rectype:0
(4) normal record offset:234 heapno:8 n_owned 0,delflag:N minflag:0 rectype:0
(5) normal record offset:270 heapno:10 n_owned 0,delflag:N minflag:0 rectype:0
(6) normal record offset:126 heapno:2 n_owned 5,delflag:N minflag:0 rectype:0
(7) normal record offset:252 heapno:9 n_owned 0,delflag:N minflag:0 rectype:0
(8) normal record offset:180 heapno:5 n_owned 0,delflag:N minflag:0 rectype:0
(9) normal record offset:144 heapno:3 n_owned 0,delflag:N minflag:0 rectype:0
(10) normal record offset:198 heapno:6 n_owned 0,delflag:N minflag:0 rectype:0
(11) normal record offset:288 heapno:11 n_owned 0,delflag:N minflag:0 rectype:0
(12) SUPREMUM record offset:112 heapno:1 n_owned 6,delflag:N minflag:0 rectype:3
-----Total used rows:12 used rows list(phy):
(1) INFIMUM record offset:99 heapno:0 n_owned 1,delflag:N minflag:0 rectype:2
(2) SUPREMUM record offset:112 heapno:1 n_owned 6,delflag:N minflag:0 rectype:3
(3) normal record offset:126 heapno:2 n_owned 5,delflag:N minflag:0 rectype:0
(4) normal record offset:144 heapno:3 n_owned 0,delflag:N minflag:0 rectype:0
(5) normal record offset:162 heapno:4 n_owned 0,delflag:N minflag:0 rectype:0
(6) normal record offset:180 heapno:5 n_owned 0,delflag:N minflag:0 rectype:0
(7) normal record offset:198 heapno:6 n_owned 0,delflag:N minflag:0 rectype:0
(8) normal record offset:216 heapno:7 n_owned 0,delflag:N minflag:0 rectype:0
(9) normal record offset:234 heapno:8 n_owned 0,delflag:N minflag:0 rectype:0
(10) normal record offset:252 heapno:9 n_owned 0,delflag:N minflag:0 rectype:0
(11) normal record offset:270 heapno:10 n_owned 0,delflag:N minflag:0 rectype:0
(12) normal record offset:288 heapno:11 n_owned 0,delflag:N minflag:0 rectype:0
...

可以看到,总共有12条记录,除去INFIMUM、SUPREMUM这两条虚拟记录,共有10条物理记录。为什么是10条记录,而不是5条记录呢,这是因为multi-valued index实际上是把每个zipcode value对都视为一天索引记录。再看一眼表数据:

[root@yejr.me]> select id, custinfo->'$.zipcode' from customers;
+----+-----------------------+
| id | custinfo->'$.zipcode' |
+----+-----------------------+
|  1 | [94582, 94536]        |
|  2 | [94568, 94507, 94582] |
|  3 | [94477, 94507]        |
|  4 | [94536]               |
|  5 | [94507, 94582]        |
+----+-----------------------+

上面写入的5条数据中,共有10个zipcode,虽然有些zipcode是相同的,但他们对应的id值不同,因此也要分别记录索引。也就是说, "zipcode":[94582,94536]这里的两个整型数据,实际上在索引树中,是两条独立的数据,只不过他们都分别指向id=1这条数据。那么,这个索引实际上存储的顺序就应该是下面这样才对:

+---------+------+
| zipcode | id   |
+---------+------+
|   94477 |    3 |
|   94507 |    2 |
|   94507 |    3 |
|   94507 |    5 |
|   94536 |    1 |
|   94536 |    4 |
|   94568 |    2 |
|   94582 |    1 |
|   94582 |    2 |
|   94582 |    5 |
+---------+------+

提醒下,由于InnoDB的index extensions特性,辅助索引存储时总是包含聚集索引列值,若有两个值相同的辅助索引值,则会根据其聚集索引列值进行排序。当然了,以上也只是我们的推测,并不能实锤,直接去核对源码好像有点难度。好在可以用另一个神器bcview来查看底层数据。这里之所以没有采用innodb_space工具,是因为它对MySQL 5.7以上的版本兼容性不够好,有些场景下解析出来的可能是错误数据。

3. 用bcview工具确认结论

按照推测,zips这个索引按照逻辑顺序的话,第一条索引记录是 [94477,3]才对,上面看到第一条逻辑记录的偏移量是216,我们来看下。

# 从上面扫描结果可知,一条记录总消耗存储空间是18字节
bcview customers.ibd 16 216 18
...
# 这里为了排版方便,我给人为折行了
current block:00000005 --对应的pageno=5
--Offset:00216 --偏移量216
--cnt bytes:18 --读取18字节
--data is:000000000001710d80000003000000400024

来分析下这条数据,要拆分成几段来看。

000000000001710d,8字节(BIGINT),十六进制转成十进制,就是 94477
80000003,4字节(INT),对应十进制3,也就是id=3
000000400024,record headder,6字节,忽略

这表明推测结果是正确的。

另外,如果按照物理写入顺序,则第一条数据id=1这条数据:

+----+-----------------------+
| id | custinfo->'$.zipcode' |
+----+-----------------------+
|  1 | [94582, 94536]        |
+----+-----------------------+

这条物理记录,共产生两条辅助索引记录,我们一次性扫描出来(36字节):

bcview customers.ibd 16 126 36
...
current block:00000005
--Offset:00126
--cnt bytes:36
--data is:000000000001714880000001000000180036000000000001717680000001000000200048
...

同上,解析结果见下(存储顺序要反着看):

0000000000017148 => 94536
80000001 => id=1
000000180036
0000000000017176 => 94582
80000001 => id=1
000000200048

可以看到,确实是把JSON里的多个值拆开来,对应到聚集索引后存储每个键值。至此,我们完全搞清楚了multi-valued index的底层存储结构。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
存储 JSON 关系型数据库
解密MySQL 8.0 multi-valued indexes
解密MySQL 8.0 multi-valued indexes
143 0
|
MySQL 关系型数据库 测试技术
MySQL 8.0 Invisible Indexes 和 RDS 5.6 Invisible Indexes介绍
mysql 在8.0的时候支持了不可见索引,称为隐式索引 索引默认是可以的,控制索引的可见性可以使用Invisible,visible关键字作为create table,create index,alter table 来进行定义。
20845 0
|
存储 移动开发 JSON
新功能初探 | MySQL 8.0 Multi-Valued Indexes功能简述
本文主要介绍下8.0.17新引入的功能multi-valued index
3069 0
|
1天前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
10 0
|
28天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
56 3
|
28天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
66 3
|
28天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE 'log_%';`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
86 2
|
1月前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
263 15
|
1月前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
|
1月前
|
关系型数据库 MySQL 数据库
数据库数据恢复—MYSQL数据库文件损坏的数据恢复案例
mysql数据库文件ibdata1、MYI、MYD损坏。 故障表现:1、数据库无法进行查询等操作;2、使用mysqlcheck和myisamchk无法修复数据库。