【Flink on Yarn的三种部署方式详细介绍,及应用场景】

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink on Yarn的三种部署方式,Session模式,Per-Job模式,application模式,他们为何会诞生,我们要用哪种模式来部署

1. Session模式

这种模式会预先在yarn启动一个flink集群,然后将任务提交到这个集群上,这种模式,集群中的任务使用相同的资源,如果某一个任务出现了问题导致整个集群挂掉,那就得重启集群中的所有任务,这样就会给集群造成很大的负面影响。
在这里插入图片描述
在这里插入图片描述

特点:需要事先申请资源,使用Flink中的yarn-session(yarn客户端),启动JobManager和TaskManger

  • 优点:不需要每次递交作业申请资源,而是使用已经申请好的资源,从而提高执行效率
  • 缺点:作业执行完成以后,资源不会被释放,因此一直会占用系统资源

应用场景

==适合作业递交比较频繁的场景,小作业比较多的场景==

2. Per-Job模式

考虑到集群的资源隔离情况,一般生产上的任务都会选择per job模式,也就是每个任务启动一个flink集群,各个集群之间独立运行,互不影响,且每个集群可以设置独立的配置。
在这里插入图片描述
在这里插入图片描述

特点:每次递交作业都需要申请一次资源

  • 优点:作业运行完成,资源会立刻被释放,不会一直占用系统资源
  • 缺点:每次递交作业都需要申请资源,会影响执行效率,因为申请资源需要消耗时间

应用场景

==适合作业比较少的场景、大作业的场景==

3. application模式

3.1. 背景

flink-1.11 引入了一种新的部署模式,即 Application 模式。目前,flink-1.11 已经可以支持基于 Yarn 和 Kubernetes 的 Application 模式。

Session模式:所有作业共享集群资源,隔离性差,JM 负载瓶颈,main 方法在客户端执行。
Per-Job模式:每个作业单独启动集群,隔离性好,JM 负载均衡,main 方法在客户端执行。

在这里插入图片描述
注意 : 三角形 正方形 它们的位置,现在在==Deployer==

通过以上两种模式的特点描述,可以看出,main方法都是在客户端执行,社区考虑到在客户端执行 main() 方法来获取 flink 运行时所需的依赖项,并生成 JobGraph,提交到集群的操作都会在实时平台所在的机器上执行,那么将会给服务器造成很大的压力。尤其在大量用户共享客户端时,问题更加突出。
此外这种模式提交任务的时候会把本地flink的所有jar包先上传到hdfs上相应的临时目录,这个也会带来大量的网络的开销,所以如果任务特别多的情况下,平台的吞吐量将会直线下降。
因此,社区提出新的部署方式 ==Application 模式解决该问题。==

3.2. 原理

在这里插入图片描述
注意 : 三角形 正方形 它们的位置,现在在==JM==

Application 模式下,用户程序的 main 方法将在集群中而不是客户端运行,用户将程序逻辑和依赖打包进一个可执行的 jar 包里,集群的入口程序 (ApplicationClusterEntryPoint) 负责调用其中的 main 方法来生成 JobGraph。Application 模式为每个提交的应用程序创建一个集群,该集群可以看作是在特定应用程序的作业之间共享的会话集群,并在应用程序完成时终止。在这种体系结构中,Application 模式在不同应用之间提供了资源隔离和负载平衡保证。在特定一个应用程序上,JobManager 执行 main() 可以节省所需的 CPU 周期,还可以节省本地下载依赖项所需的带宽。
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2天前
|
存储 物联网 大数据
探索阿里云 Flink 物化表:原理、优势与应用场景全解析
阿里云Flink的物化表是流批一体化平台中的关键特性,支持低延迟实时更新、灵活查询性能、无缝流批处理和高容错性。它广泛应用于电商、物联网和金融等领域,助力企业高效处理实时数据,提升业务决策能力。实践案例表明,物化表显著提高了交易欺诈损失率的控制和信贷审批效率,推动企业在数字化转型中取得竞争优势。
27 14
|
2月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
105 9
|
3月前
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
98 3
|
3月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
130 0
|
5月前
|
机器学习/深度学习 人工智能 运维
美团 Flink 大作业部署问题之Flink在生态技术演进上有什么主要方向
美团 Flink 大作业部署问题之Flink在生态技术演进上有什么主要方向
|
5月前
|
监控 Serverless Apache
美团 Flink 大作业部署问题之如何体现Flink在业界的影响力
美团 Flink 大作业部署问题之如何体现Flink在业界的影响力
|
5月前
|
监控 Serverless 数据库
美团 Flink 大作业部署问题之端云联调并将流量恢复到云端实例如何结束
美团 Flink 大作业部署问题之端云联调并将流量恢复到云端实例如何结束
|
4月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1312 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
2天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。