Flink Agents 0.1.0 发布公告

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Apache Flink Agents 0.1.0 首发预览版上线!作为 Flink 新子项目,它在流处理引擎上构建事件驱动的 AI 智能体,融合 LLM、工具、记忆与动态编排,支持高吞吐、低延迟、精确一次语义,实现数据与 AI 无缝集成,助力电商、金融等实时场景智能决策。

Apache Flink 社区很高兴地宣布发布 Apache Flink Agents 的首个预览版本(0.1.0)。

什么是 Apache Flink Agents

Apache Flink Agents 是 Apache Flink 的全新子项目,用于在 Flink 的流处理运行时之上直接构建事件驱动的 AI 智能体。它在同一框架内统一了流处理与自主智能体能力,将 Flink 在规模、低时延、容错能力和状态管理方面的成熟优势,与构建智能体所需的能力(大型语言模型、工具、记忆与动态编排)相结合。

为什么需要 Apache Flink Agents

尽管 AI 智能体在聊天机器人和智能编程等交互式应用中发展迅速,但这类系统通常以同步、一次性的交互为主。许多企业场景无法等待用户触发后再启动。例如,在电商、金融、物联网和物流等工业化场景中,系统必须对支付失败、传感器异常或用户点击等实时事件立即作出关键决策。

要在生产环境中取得成功,企业级智能体必须具备以下能力:

  • 处理实时且高吞吐的事件流,例如交易、传感器异常或用户点击。

  • 持续且自主运行,而不仅在收到指令时才工作。

  • 在出现问题时,确保安全性、可审计性以及故障恢复能力。

这类工作不仅需要“智能”,还要求大规模处理能力、毫秒级延迟、容错能力以及有状态的协调,而这些正是 Apache Flink 的强项。

迄今为止,还没有一个统一的框架能够将 Agentic AI 模式引入 Flink 久经考验的流处理生态。Apache Flink Agents 通过将智能体视作事件驱动的微服务来弥补这一空白,使其具备始终在线、可靠且可扩展的特性。

核心特性

基于 Flink 久经验证的流处理引擎,Apache Flink Agents 继承了分布式、大规模、具备容错能力的结构化数据处理能力与成熟的状态管理,并在此基础上为智能体 AI 的基本组件与功能提供原生支持与抽象,如大语言模型(LLM)、提示词、工具、记忆、动态编排、可观测性等。

Apache Flink Agents 的核心特性包括:

  • 大规模数据处理与毫秒级时延:依托 Flink 的分布式处理引擎,实时处理海量事件流。

  • 数据与 AI 的无缝集成:直接将 Flink 的 DataStream 和 Table API 作为智能体的输入和输出,实现 Flink 中结构化数据处理与 AI 文本处理能力的平滑集成。

  • Action 级别的精确一次一致性:通过将 Flink 的检查点机制与外部预写日志相结合,确保智能体的 Action 及其外部效应具备精确一次一致性语义。

  • 熟悉的智能体抽象:沿用业内常见的 AI 智能体概念,便于具有相关经验的开发者快速上手并在 Apache Flink Agents 上构建应用。

  • 多语言支持:同时提供原生的 Python 与 Java API,适配多样化开发环境,支持团队选择偏好的编程语言。

  • 丰富的生态系统:原生集成主流大语言模型(LLM)、来自不同提供商的向量存储,以及托管在 MCP 服务器上的工具与提示词,并支持自定义扩展。

  • 可观测性:采用以事件为中心的编排方式,所有智能体的 Action 均由事件连接与控制,可通过事件日志观察并理解智能体行为。

0.1.0 版本发布

Flink Agents 0.1.0 可在此处下载。

文档与快速入门示例可在此处查阅。

注意:Flink Agents 0.1.0 为预览版本,这意味着:

  • 部分功能可能存在已知或未知问题。您可以通过 Github Issues 查看已知问题列表及其解决状态。

  • 当前的 API 与配置选项处于实验阶段,后续版本可能发生不向后兼容的变更。因此,我们不建议在对稳定性要求较高的生产环境中使用该版本。

我们非常感谢您提供的任何反馈,无论是分享您如何使用我们的产品、提出新功能建议、帮助我们发现和修复问题,还是任何其他想法。您的见解对我们而言弥足珍贵。

您可以通过以下方式联系我们:

贡献者列表

Apache Flink 社区感谢对此版本作出贡献的每一位贡献者:

Adem Amen Thabti, Alan Z., Eugene, Hao Li, HuangXingBo, Kavishankarks, KeGu-069, Letao Jiang, Qingsheng Ren, Richard, Wenjin Xie, Xintong Song, Xu Huang, Xuannan, twosom, yanand0909, zhaomin1423

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
1月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
329 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
2月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1111 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
3月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
477 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3572 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
526 56
|
10月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
662 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
11月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。

相关产品

  • 实时计算 Flink版