NLP情感分析笔记(五):多类型情感分析

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 在本次学习中,我们将对具有 6 个类的数据集执行分类。请注意,该数据集实际上并不是情感分析数据集,而是问题数据集,任务是对问题所属的类别进行分类。但是,本次学习中涵盖的所有内容都适用于任何包含属于 𝐶C 类之一的输入序列的示例的数据集。

在本次学习中,我们将对具有 6 个类的数据集执行分类。请注意,该数据集实际上并不是情感分析数据集,而是问题数据集,任务是对问题所属的类别进行分类。但是,本次学习中涵盖的所有内容都适用于任何包含属于 𝐶C 类之一的输入序列的示例的数据集。


下面,我们设置字段并加载数据集,与之前不同的是:


第一,我们不需要在 LABEL 字段中设置 dtype。在处理多类问题时,PyTorch 期望标签被数字化为LongTensor。


第二,这次我们使用的是TREC数据集而不是IMDB数据集。 fine_grained 参数允许我们使用细粒度标签(其中有50个类)或不使用(在这种情况下它们将是6个类)。


训练模型代码:


import torch
from torchtext.legacy import data
from torchtext.legacy import datasets
import random
SEED = 1234
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
TEXT = data.Field(tokenize = 'spacy',tokenizer_language = 'en_core_web_sm')
LABEL = data.LabelField()
train_data, test_data = datasets.TREC.splits(TEXT, LABEL, fine_grained=False)
train_data, valid_data = train_data.split(random_state = random.seed(SEED))
# 建立词汇表
MAX_VOCAB_SIZE = 25_000
TEXT.build_vocab(train_data, 
                 max_size = MAX_VOCAB_SIZE, 
                 vectors = "glove.6B.100d", 
                 unk_init = torch.Tensor.normal_)
LABEL.build_vocab(train_data)
# 建立迭代器
BATCH_SIZE = 64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
    (train_data, valid_data, test_data), 
    batch_size = BATCH_SIZE, 
    device = device)
# 模型的建立
import torch.nn as nn
import torch.nn.functional as F
class CNN(nn.Module):
    def __init__(self, vocab_size, embedding_dim, n_filters, filter_sizes, output_dim, 
                 dropout, pad_idx):
        super().__init__()        
        self.embedding = nn.Embedding(vocab_size, embedding_dim)        
        self.convs = nn.ModuleList([
                                    nn.Conv2d(in_channels = 1, 
                                              out_channels = n_filters, 
                                              kernel_size = (fs, embedding_dim)) 
                                    for fs in filter_sizes
                                    ])       
        self.fc = nn.Linear(len(filter_sizes) * n_filters, output_dim)       
        self.dropout = nn.Dropout(dropout)        
    def forward(self, text):       
        #text = [sent len, batch size]        
        text = text.permute(1, 0)                
        #text = [batch size, sent len]
        embedded = self.embedding(text)   
        #embedded = [batch size, sent len, emb dim]
        embedded = embedded.unsqueeze(1)
        #embedded = [batch size, 1, sent len, emb dim]
        conved = [F.relu(conv(embedded)).squeeze(3) for conv in self.convs]
        #conv_n = [batch size, n_filters, sent len - filter_sizes[n]]
        pooled = [F.max_pool1d(conv, conv.shape[2]).squeeze(2) for conv in conved]
        #pooled_n = [batch size, n_filters]     
        cat = self.dropout(torch.cat(pooled, dim = 1))
        #cat = [batch size, n_filters * len(filter_sizes)]   
        return self.fc(cat)
# 模型参数设置
INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
N_FILTERS = 100
FILTER_SIZES = [2,3,4]
OUTPUT_DIM = len(LABEL.vocab)
DROPOUT = 0.5
PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]
model = CNN(INPUT_DIM, EMBEDDING_DIM, N_FILTERS, FILTER_SIZES, OUTPUT_DIM, DROPOUT, PAD_IDX)
# 加载预训练模型
pretrained_embeddings = TEXT.vocab.vectors
model.embedding.weight.data.copy_(pretrained_embeddings)
# 用0初始化未知的权重和padding参数
UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token]
model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM)
model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM)
# 设置loss
import torch.optim as optim
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
model = model.to(device)
criterion = criterion.to(device)
# 计算精确度
def categorical_accuracy(preds, y):
    """
    Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8
    """
    top_pred = preds.argmax(1, keepdim = True)
    correct = top_pred.eq(y.view_as(top_pred)).sum()
    acc = correct.float() / y.shape[0]
    return acc
# 训练
def train(model, iterator, optimizer, criterion):
    epoch_loss = 0
    epoch_acc = 0    
    model.train()    
    for batch in iterator:        
        optimizer.zero_grad()        
        predictions = model(batch.text)        
        loss = criterion(predictions, batch.label)        
        acc = categorical_accuracy(predictions, batch.label)        
        loss.backward()        
        optimizer.step()        
        epoch_loss += loss.item()
        epoch_acc += acc.item()        
    return epoch_loss / len(iterator), epoch_acc / len(iterator)
# 评价
def evaluate(model, iterator, criterion):    
    epoch_loss = 0
    epoch_acc = 0    
    model.eval()    
    with torch.no_grad():    
        for batch in iterator:
            predictions = model(batch.text)            
            loss = criterion(predictions, batch.label)            
            acc = categorical_accuracy(predictions, batch.label)
            epoch_loss += loss.item()
            epoch_acc += acc.item()        
    return epoch_loss / len(iterator), epoch_acc / len(iterator)
# 时间统计
import time
def epoch_time(start_time, end_time):
    elapsed_time = end_time - start_time
    elapsed_mins = int(elapsed_time / 60)
    elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
    return elapsed_mins, elapsed_secs
# 训练模型
N_EPOCHS = 5
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
    start_time = time.time()
    train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
    valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
    end_time = time.time()
    epoch_mins, epoch_secs = epoch_time(start_time, end_time)
    if valid_loss < best_valid_loss:
        best_valid_loss = valid_loss
        torch.save(model.state_dict(), 'tut5-model.pt')
    print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
    print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
    print(f'\t Val. Loss: {valid_loss:.3f} |  Val. Acc: {valid_acc*100:.2f}%')
# 测试模型
model.load_state_dict(torch.load('tut5-model.pt'))
test_loss, test_acc = evaluate(model, test_iterator, criterion)
print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')
目录
相关文章
|
24天前
|
机器学习/深度学习 自然语言处理 PyTorch
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
68 2
|
20天前
|
机器学习/深度学习 自然语言处理 算法
自然语言处理中的情感分析技术
自然语言处理中的情感分析技术
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【人工智能】自然语言处理(NLP)的突破,关注NLP在机器翻译、情感分析、聊天机器人等方面的最新研究成果和应用案例。
自然语言处理(NLP)作为人工智能的一个重要分支,近年来取得了显著的突破,特别在机器翻译、情感分析、聊天机器人等领域取得了显著的研究成果和广泛的应用。以下是对这些领域最新研究成果和应用案例的概述,并附带相应的代码实例。
113 1
|
4月前
|
机器学习/深度学习 存储 自然语言处理
自然语言处理中的情感分析技术:深入解析与应用前景
【8月更文挑战第4天】情感分析技术作为自然语言处理领域的重要分支,具有广泛的应用前景和重要的研究价值。通过不断的技术创新和应用实践,我们可以期待情感分析在未来发挥更大的作用,为我们的生活和工作带来更多便利和效益。
184 10
|
4月前
|
自然语言处理 算法 数据挖掘
自然语言处理 Paddle NLP - 情感分析技术及应用SKEP-实践
自然语言处理 Paddle NLP - 情感分析技术及应用SKEP-实践
44 0
|
4月前
|
机器学习/深度学习 自然语言处理 iOS开发
自然语言处理 Paddle NLP - 情感分析技术及应用-理论
自然语言处理 Paddle NLP - 情感分析技术及应用-理论
30 0
|
6月前
|
自然语言处理
【自然语言处理NLP】DPCNN模型论文精读笔记
【自然语言处理NLP】DPCNN模型论文精读笔记
74 2
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
Python自然语言处理实战:文本分类与情感分析
本文探讨了自然语言处理中的文本分类和情感分析技术,阐述了基本概念、流程,并通过Python示例展示了Scikit-learn和transformers库的应用。面对多义性理解等挑战,研究者正探索跨域适应、上下文理解和多模态融合等方法。随着深度学习的发展,这些技术将持续推动人机交互的进步。
284 1
|
6月前
|
自然语言处理 监控 数据挖掘
|
6月前
|
机器学习/深度学习 数据采集 人工智能
Python 高级实战:基于自然语言处理的情感分析系统
**摘要:** 本文介绍了基于Python的情感分析系统,涵盖了从数据准备到模型构建的全过程。首先,讲解了如何安装Python及必需的NLP库,如nltk、sklearn、pandas和matplotlib。接着,通过抓取IMDb电影评论数据并进行预处理,构建情感分析模型。文中使用了VADER库进行基本的情感分类,并展示了如何使用`LogisticRegression`构建机器学习模型以提高分析精度。最后,提到了如何将模型部署为实时Web服务。本文旨在帮助读者提升在NLP和情感分析领域的实践技能。
250 0