机器学习:性能度量篇-Python利用鸢尾花数据绘制P-R曲线

简介: 机器学习:性能度量篇-Python利用鸢尾花数据绘制P-R曲线

前言


本人大数据专业初入大三刚刚接触机器学习这一课程,教材是最典型的西瓜书,第一次作业当然就是利用本专业语言多功能python语言结合书内容尝试自己构建P-R曲线以及延伸指标曲线。当然初入一些算法和机器学习的一些库还不是很熟练掌握,有待提升自己的编程结合能力。在此领域本人有诸多不明确疑问,可能文章会有些许错误,望大家在评论区指正,本篇文章错误将会不断更正维护。


提示:以下是本篇文章正文内容,下面案例可供参考


一、性能度量


性能度量目的是对学习期的泛华能力进行评估,性能度量反映了任务需求,在对比不同算法的泛华能力时,使用不同的性能度量往往会导致不同的评判结果。常用度量有均方误差,错误率与精度,查准率与查全率等。


1.错误率与精度


这两种度量既适用于二分类任务,也适用于多分类任务。错误率是分类错误的样本数占样本总数的比例,精度则是分类正确的样本数占样本总数的比例。


2.查准率、查全率与F1


查准率(precision)与查全率(recall)是对于需求在信息检索、Web搜索等应用评估性能度量适应度高的检测数值。对于二分类问题,可将真实类别与算法预测类别的组合划分为真正例(ture positive)、假证例(false positive)、真反例(true negative)、假反例(false negative)四种情形。显然TP+FP+TN+FN=样例总数。分类结果为混淆矩阵:


image.png

查准率P定义为:


image.png


查全率R定义为:


image.png



一般来说。查准率高时,查全率往往偏低;而查全率高时,查准率往往偏低。通常只有一些简单任务中,才可能使查全率和查准率都很高。


二、代码实现:

1.基于具体二分类问题算法实现代码:


import numpy
import matplotlib
from matplotlib import pyplot as plt
# true = [真实组1,真实组2...真实组N],predict = [预测组1,预测组2...预测组N]
def evaluation(true, predict):
    num = len(true)  # 确定有几组
    (TP, FP, FN, TN) = ([0] * num for i in range(4))  # 赋初值
    for m in range(0, len(true)):
        if (len(true[m]) != len(predict[m])):  # 样本数都不等,显然是有错误的
            print("真实结果与预测结果样本数不一致。")
        else:
            for i in range(0, len(true[m])):  # 对每一组数据分别计数
                if (predict[m][i] == 1) and ((true[m][i] == 1)):
                    TP[m] += 1.0
                elif (predict[m][i] == 1) and ((true[m][i] == 0)):
                    FP[m] += 1.0
                elif (predict[m][i] == 0) and ((true[m][i] == 1)):
                    FN[m] += 1.0
                elif (predict[m][i] == 0) and ((true[m][i] == 0)):
                    TN[m] += 1.0
    (P, R) = ([0] * num for i in range(2))
    for m in range(0, num):
        if (TP[m] + FP[m] == 0):
            P[m] = 0  # 预防一些分母为0的情况
        else:
            P[m] = TP[m] / (TP[m] + FP[m])
        if (TP[m] + FN[m] == 0):
            R[m] = 0  # 预防一些分母为0的情况
        else:
            R[m] = TP[m] / (TP[m] + FN[m])
    plt.title("P-R")
    plt.xlabel("P")
    plt.ylabel("R")
    #plt.plot(P, R)
    #plt.show()
if __name__ == "__main__":
    # 简单举例
    myarray_ture = numpy.random.randint(0, 2, (3, 100))
    myarray_predict = numpy.random.randint(0, 2, (3, 100))
    evaluation(myarray_ture,myarray_predict)

下面给出利用鸢尾花数据集绘制P-R曲线的代码(主要体现其微互斥性)


2.利用鸢尾花绘制P-R曲线


from sklearn import svm, datasets
from sklearn.model_selection import train_test_split
import numpy as np
iris = datasets.load_iris()
# 鸢尾花数据导入
x = iris.data
#每一列代表了萼片或花瓣的长宽,一共4列,每一列代表某个被测量的鸢尾植物,iris.shape=(150,4)
y = iris.target
#target是一个数组,存储了data中每条记录属于哪一类鸢尾植物,所以数组的长度是150,所有不同值只有三个
random_state = np.random.RandomState(0)
#给定状态为0的随机数组
n_samples, n_features = x.shape
x = np.c_[x, random_state.randn(n_samples, 200 * n_features)]
#添加合并生成特征测试数据集
x_train, x_test, y_train, y_test = train_test_split(x[y < 2], y[y < 2],
                                                    test_size=0.25,
                                                    random_state=0)
#根据此模型训练简单数据分类器
classifier = svm.LinearSVC(random_state=0)#线性分类支持向量机
classifier.fit(x_train, y_train)
y_score = classifier.decision_function(x_test)
from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt
precision, recall, _ =precision_recall_curve(y_test, y_score)
plt.fill_between(recall, precision,color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.0])
plt.xlim([0.0, 1.0])
plt.plot(recall, precision)
plt.title("Precision-Recall")
plt.show()


效果:20200924002308127.png


P-R图直观的显示出学习器在样本上的查全率、查准率。在进行比较时,若一个休息区的P-R曲线被另一个学习器的曲线完全“包住”,则可断言后者的性能优于前者。为取得比较合理的判断依据,将采用“平衡点”(Break-Even Point,BEP)度量对比算法的泛华性能强弱。它是“查准率=查全率”时的取值。但BEP还是过于简化,更常用F1度量(all为样例总数):


image.png

总结


还有ROC与AUC没有提到,下篇再叙述,写完已经到1点了,明天还有课顶不住先睡觉了。

目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 JSON
Pandas数据应用:机器学习预处理
本文介绍如何使用Pandas进行机器学习数据预处理,涵盖数据加载、缺失值处理、类型转换、标准化与归一化及分类变量编码等内容。常见问题包括文件路径错误、编码不正确、数据类型不符、缺失值处理不当等。通过代码案例详细解释每一步骤,并提供解决方案,确保数据质量,提升模型性能。
150 88
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
1月前
|
机器学习/深度学习 数据采集 算法
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
机器学习在生物信息学中的创新应用:解锁生物数据的奥秘
206 36
|
1月前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
62 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
1月前
|
人工智能 Kubernetes Cloud Native
跨越鸿沟:PAI-DSW 支持动态数据挂载新体验
本文讲述了如何在 PAI-DSW 中集成和利用 Fluid 框架,以及通过动态挂载技术实现 OSS 等存储介质上数据集的快速接入和管理。通过案例演示,进一步展示了动态挂载功能的实际应用效果和优势。
教大家用 Python 绘制几棵圣诞树~
今天分享五种用 Python 绘制圣诞树的方法,从基础到高级,效果也不断攀升分为 1 到 5 五个 Level 水平;
教大家用 Python 绘制几棵圣诞树~
|
Java Python

推荐镜像

更多