AI+”改变世界 不同领域的5大人工智能趋势

简介: 人工智能是当代最热门和关注度最高的话题,它将改变人们对20年后世界的看法。

AI相关工作的需求频繁增加,尤其是在数据科学和机器学习职位方面,人们相信,正如约100年前电力改变世界一样,人工智能也将改变世界。吴恩达教授(美国斯坦福大学计算机科学系和电子工程系副教授)曾反复强调一句名言:“人工智能是新电力。”  


人工智能领域进步飞快:由于有图形处理器(也称显卡,GPUs)和大量数据,人工智能的处理能力和计算能力提高,我们才能在深度学习和现代算法方面占据领先地位。


最初的电脑占据整个房间,发展到如今巴掌大小的智能手机和人工智能,它们现在能执行人脸识别、异物检测等曾经被视为不可能完成的任务。


还有其他一些引人关注的领域,如机器人技术、电子技术等,也在与时俱进,向更高领域进阶。本文将研究五大人工智能或AI组合技术和趋势,这些技术和趋势将超越想象,传遍整个世界。


1.自动化与人工智能


未来几十年,机器人技术将大有前景,在现实世界中,它实施的领域选择将非常广泛。

机器人技术应用范围很广,包括工厂和工业中的工业机器人和机械臂、探索火星或月球等外行星的太空漫游车、军事应用、医疗用途等。然而,未来人工智能与机器人结合将成为一种创新方法,改变未来几年格局。具有人工智能集成的机器人将能够处理、计算、评估和执行所需的人类行为。


机器人技术和人工智能在未来发展空间很大。数据科学项目与机器人的集成潜力巨大,可以用很少的人力物力在工业中实现一流的产品制造。机器人和AI能力无限,在处理手头任务方面具有巨大的潜力。人工智能和机器人是工业应用自动化任务的强大组合,在各种现实用例中潜力无限。  


至于大家所担忧的科幻影片中基于AI的机器人将夺走人类工作或征服世界,完全是庸人自扰。对于前者,机器人总是需要某种人类行为的干预,而对于后者,距离实现真正的人工智能还有很长的路要走。因此,至少在未来20年内,上述两种担忧完全没必要。


2. GPT-3和其他振奋人心的发展


深度学习和人工智能在自然语言处理方面已经取得了长足的进步,从简单的LSTMs,已经发展到使用BERT、transformers、序列到关注序列模型等。


生成式预训练的Transformer 3是一种自动回归语言模型,它运用深度学习来生成人能理解的文本,是由位于旧金山的人工智能研究实验室OpenAI创建的GPT-n系列中的第三代语言预测模型。


开发的GPT-3模型是自然语言处理领域的一次进展。OpenAI在将近1,750亿个训练参数上训练了该模型的权重,该模型无需任何人为干预即可撰写完整的新闻文章和杂志。

不断投入资金和加大支持力度使得这些领域发展和进步不断,从工业领域的人工智能一直到游戏领域的人工智能的研究呈指数级增长,将获得巨大的生产力和广泛的成功。


3.云端AI


 image.png

云计算是计算机系统资源(尤其是数据存储和计算能力)的按需可用性,而无需用户直接进行主动管理,该术语通常用于描述互联网上可供许多用户使用的数据中心。


云计算和人工智能的结合真正颠覆了该领域,当这两种出色的应用实践相结合,成就让人瞩目。与人工智能集成的云计算的主要优势是具备广泛的可用资源。


GPUs可用于执行复杂的深度学习计算,并将这些人工智能模型部署到云端,增加受众,这是一项巨大的成就。谷歌合作实验室是一个很好的平台,可以建立Jupyter笔记本,用于评估、计算并分享AI项目。


4. AI和IoT(物联网):(AIOT)


物联网(IoT)描述了嵌入传感器、软件和其他技术的物理对象(“物”)网络,目的是通过互联网与其他设备和系统进行数据连接和交换。  


人工智能与物联网的结合形成了一个全新有趣又独特的研究分支,简称为“人工物联网”或“ AIOT”。启用了AI的物联网(IoT)能够创建智能机器,该机器可以模拟智能行为,同时支持几乎没有人为干扰的决策能力。


随着人工智能在嵌入式物联网设备上的融合,如树莓派、英伟达Jetson Nano等,可以开发出一些利润丰厚、对全社会有益的杰作。虚拟助手(例如Alexa,Siri或Google AI)的一些示例显示了高级智能和未来的可能性。


5. GANs(生成式对抗网络)


 image.png

GANs在2014年由Ian Goodfellow开发并首创,被认为是深度学习的未来,因为其具有创造从未存在过的视觉和图像的惊人能力。生成式对抗性网络是当前深度学习的高峰,其曲线正在不断改进。


不可否认,GANs是未来趋势,它将永远变革人工智能。笔者必须指出两个网络——生成器和鉴别器,二者相互对抗,并存在小小的争议。


生成器试图创建真实的假图像,以绕过鉴别器的基本检查,而鉴别器的作用是捕获假副本。这种猫和老鼠式的追逐导致了从未出现过的独特样品发展,它真实存在,远超人类想象。


人工智能领域可以实现无限的优化和发展,这些主要的新兴趋势只是人工智能及其同代人未来的一个迹象。人工智能就在我们身边,这个领域的快速发展着实让人着迷,新技术及人工智能的崛起令人兴奋不已。未来拥有无穷想象!

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
目录
相关文章
|
6天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
21天前
|
机器学习/深度学习 人工智能 监控
探索人工智能的伦理困境:我们如何确保AI的道德发展?
在人工智能(AI)技术飞速发展的今天,其伦理问题也日益凸显。本文将探讨AI伦理的重要性,分析当前面临的主要挑战,并提出相应的解决策略。我们将通过具体案例和代码示例,深入理解如何在设计和开发过程中嵌入伦理原则,以确保AI技术的健康发展。
29 11
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能与医疗健康:AI如何改变生命科学
【10月更文挑战第31天】人工智能(AI)正深刻改变医疗健康和生命科学领域。本文探讨AI在蛋白质结构预测、基因编辑、医学影像诊断和疾病预测等方面的应用,及其对科研进程、医疗创新、服务效率和跨学科融合的深远影响。尽管面临数据隐私和伦理等挑战,AI仍有望为医疗健康带来革命性变革。
97 30
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
1分钟认识:人工智能claude AI _详解CLAUDE在国内怎么使用
Claude AI 是 Anthropic 开发的先进对话式 AI 模型,以信息论之父克劳德·香农命名,体现了其在信息处理和生成方面的卓越能力
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与未来医疗:AI技术在疾病诊断中的应用前景####
本文探讨了人工智能(AI)在现代医疗领域,尤其是疾病诊断方面的应用潜力和前景。随着技术的不断进步,AI正逐渐改变传统医疗模式,提高诊断的准确性和效率。通过分析当前的技术趋势、具体案例以及面临的挑战,本文旨在为读者提供一个全面的视角,理解AI如何塑造未来医疗的面貌。 ####
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
159 6
|
2月前
|
人工智能 自动驾驶 数据安全/隐私保护
人工智能的伦理困境:我们如何确保AI的道德发展?
【10月更文挑战第21天】随着人工智能(AI)技术的飞速发展,其在各行各业的应用日益广泛,从而引发了关于AI伦理和道德问题的讨论。本文将探讨AI伦理的核心问题,分析当前面临的挑战,并提出确保AI道德发展的建议措施。
|
2月前
|
人工智能 搜索推荐 安全
人工智能与未来社会:探索AI在教育领域的革命性影响
本文深入探讨了人工智能(AI)技术在教育领域的潜在影响和变革。通过分析AI如何个性化学习路径、提高教学效率以及促进教育资源的公平分配,我们揭示了AI技术对教育模式的重塑力量。文章还讨论了实施AI教育所面临的挑战,包括数据隐私、伦理问题及技术普及障碍,并提出了相应的解决策略。通过具体案例分析,本文旨在启发读者思考AI如何助力构建更加智能、高效和包容的教育生态系统。
|
1月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
159 0
|
2月前
|
人工智能 算法 安全
人工智能伦理与监管:构建负责任的AI未来
【10月更文挑战第3天】随着人工智能(AI)技术的快速发展,其在社会各领域的应用日益广泛。然而,AI的广泛应用也带来了一系列伦理和监管挑战。本文旨在探讨AI的伦理问题,分析现有的监管框架,并提出构建负责任AI未来的建议。同时,本文将提供代码示例,展示如何在实践中应用这些原则。
427 1