Mysql进阶优化篇02——索引失效的10种情况及原理(二)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 文章目录1️⃣ 数据库调优的场景2️⃣数据准备


3.2 不遵守最左前缀匹配原则

运行如下sql

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name='abcd';

将使用索引idx_age。

下面的sql不会使用索引,因为我没没有创建classId或者name的索引。或

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=4 AND student.name='abcd';

在 MySQL 建立联合索引时会遵守最佳左前缀匹配原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。


MySQL 可以为多个字段创建索引,一个索引可以包括 16 个字段,对于多列字段,过滤条件要使用所以那必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法使用。如果查询条件中没有使用这些字段中的第一个字段时,多列索引不会被使用

下面的sql查询就是遵守这一原则的正确打开方式。


EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age = 30 AND student.classId=4 AND student.name='abcd';

思考:下面sql会不会使用索引呢?

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=4 AND student.age = 30 AND student.name='abcd';
• 1

答案是会!因为优化器会执行优化的哦,会调整查询条件的顺序。不过在开发过程中我们还是要保持良好的开发习惯哟。

思考:删去索引idx_age_classididx_age,只保留idx_age_classid_name

DROP INDEX idx_age_classid ON student;
DROP INDEX idx_age ON student;

执行如下sql,会不会使用索引?

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE  student.age = 30 AND student.name='abcd';
• 1

案是会,但是只会用一部分。看看执行结果。

使用了idx_age_classid_name,但是key_len是5,也就是说只使用了age部分的排序,因为age是int类型,4个字节加上null值列表一共5个字节哦。想想就知道,B+树是先按照age排序,再按照classid排序,最后按照name排序,因此不能跳过classId的排序直接就使用name的排序哦。


3.3 不按照递增顺序插入主键

对于一个使用 InnoDB 存储引擎的表来说,在我们没有显式的创建索引时,表中的数据实际上都是存储在 聚簇索引 的叶子节点的。而记录又是存储在数据页中,数据页和记录又是按照 记录主键值从小到大 的顺序进行排序,所以如果我们 插入 的记录的 主键是依次增大 的话,那我们每插满一个数据页就换到下一个数据页继续插,而如果我们插入的 主键值忽大忽小 的话,就比较麻烦了,假设某个数据页存储的记录已经满了,它存储的主键值在 1~100 之间


如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图:

可这个数据页已经满了,再插进来咋办呢?我们需要把当前 页面分裂 成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着:性能损耗!所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增 ,这样就不会发生这样的性能损耗了。 所以我们建议:让主键具有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是我们手动插入


我们自定义的主键列 id 拥有 AUTO_INCREMENT 属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。


🎀Tips:

我们一般将主键策略设置为自动递增AUTO_INCREMENT哦!(核心业务表除外,后面会介绍这种情况)

3.4 计算、函数、类型转换(自动或手动)导致索引失效

思考:这两条 sql 哪种写法更好

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc'; 

从执行结果上说,上面sql执行结果没有区别。但是从运行效率上说,第1条sql比之后的要好,因为第一条可以使用上索引!而因为第二条使用了函数,即使建立索引也会导致索引失效。


为何使用函数时优化器会使索引失效呢?您想想,我们只是对student.name字段建立了索引,但并没有对LEFT(student.name,3)建立索引,使用函数后的关键字跟我们建立的B+树可对应不来,怎么能使用B+树优化查询呢?


3.5 类型转换导致索引失效

# 未使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name=123;
# 使用到索引
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE name='123';

创建联合索引。

CREATE INDEX idx_age_classId_name ON student(age,classId,NAME);
• 1


执行结果如下。

注意到key_len是10,说明值使用到了idx_age_classId_name索引中的age与classId部分,而name则没有用上。这是因为classId>20是范围查询,导致其右边的列索引失效。


如果想要完全使用到索引,需要按如下方式创建索引:先写等值查询的列,再写范围查询的列

create index idx_age_name_classid on student(age,name,classid); 

🎨Q:为什么条件查询会导致范围条件后面的列索引失效?

比如说有三个字段 a b c,建立复合索引a_b_c

此时叶子节点的数据排序后可能为

(a=1 b=1 c=1) (a=1 b=2 c=1) (a=1 b=2 c=3)

(a=2 b=2 c=3) (a=2 b=2 c=5) (a=2 b=5 c=1) (a=2 b=5 c=2)

(a=3 b=0 c=1) (a=3 b=3 c=5) (a=3 b=8 c=6)

假设查找 select a,b,c from table where a = 2 and b = 5 and c = 2

此时先根据a = 2找到第二行的四条数据

(a=2 b=2 c=3) (a=2 b=2 c=5) (a=2 b=5 c=1) (a=2 b=5 c=2)

然后根据b=5查到两条

(a=2 b=5 c=1) (a=2 b=5 c=2)

最后根据c=2查到目标数据

(a=2 b=5 c=2)

接下来 假设使用了范围条件

select a,b,c from table where a = 2 and b >1 and c = 2

此时先根据a = 2找到第二行的四条数据

(a=2 b=2 c=3) (a=2 b=2 c=5) (a=2 b=5 c=1) (a=2 b=5 c=2)

然后根据b>1查到四条数据

(a=2 b=2 c=3) (a=2 b=2 c=5) (a=2 b=5 c=1) (a=2 b=5 c=2)

此时要查找c=2了 但是我们发现 这四条数据的c分别是

3,5,1,2 是无序的 所以索引失效了

总结:

因为前一个条件相同的情况下,后续列才会是有序的。


🎃Tips:

应用开发中范围查询,例如:金额查询,日期查询往往都是范围查询。应将查询条件放置where语句最后。(创建的联合索引中,务必把范围设计到的字段写在最后)

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3天前
|
SQL 存储 关系型数据库
MySQL秘籍之索引与查询优化实战指南
最左前缀原则。不冗余原则。最大选择性原则。所谓前缀索引,说白了就是对文本的前几个字符建立索引(具体是几个字符在建立索引时去指定),比如以产品名称的前 10 位来建索引,这样建立起来的索引更小,查询效率更快!
45 22
 MySQL秘籍之索引与查询优化实战指南
|
3天前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
MySQL事务日志-Undo Log工作原理分析
|
1天前
|
SQL 关系型数据库 MySQL
MySQL派生表合并优化的原理和实现
通过本文的详细介绍,希望能帮助您理解和实现MySQL中派生表合并优化,提高数据库查询性能。
15 7
|
5天前
|
存储 关系型数据库 MySQL
MySQL中为什么要使用索引合并(Index Merge)?
通过这些内容的详细介绍和实际案例分析,希望能帮助您深入理解索引合并及其在MySQL中的
22 10
|
18天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
48 8
|
12天前
|
存储 关系型数据库 MySQL
【MYSQL】 ——索引(B树B+树)、设计栈
索引的特点,使用场景,操作,底层结构,B树B+树,MYSQL设计栈
|
15天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
39 3
|
15天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
43 3
|
15天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE 'log_%';`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
57 2
|
28天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
194 15

推荐镜像

更多