Mysql进阶优化篇02——索引失效的10种情况及原理(一)

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 文章目录1️⃣ 数据库调优的场景2️⃣数据准备

文章目录

1️⃣ 数据库调优的场景

2️⃣数据准备

(1)建表

(2)设置参数

(3)创建函数

(4)创建存储过程

(5)调用存储过程

(6)删除某表上的索引

3️⃣索引失效的情况

3.1 全值匹配我最爱(索引最佳)

3.2 不遵守最左前缀匹配原则

3.3 不按照递增顺序插入主键

3.4 计算、函数、类型转换(自动或手动)导致索引失效

3.5 类型转换导致索引失效

3.6 范围条件右边的列索引失效

3.7 不等于(!= 或者 <>)索引失效

3.8 is null可以使用索引,is not null无法使用索引

3.9 like 以通配符 % 开头索引失效

3.10 OR前后存在非索引的列

3.11 数据库和表的字符集不匹配

4.索引一般性建议

1️⃣ 数据库调优的场景

上一篇mysql进阶优化篇,我们介绍了数据库的性能分析工具,知道了怎么发现数据库的性能问题,这一篇博客我们将介绍索引失效的10种情况及原理


先来了解下可能需要进行数据库优化的场景。


索引失效(按准则编写、调整sql)

没有充分利用到索引(建立索引)

关联查询太多的JOIN(JOIN查询性能与表的数目成指数相关,一般不超过三张,否则需要进行sql优化或者进行反范式化设计,增加必要的冗余)

服务器调优与各个参数的设置,如缓存、线程数等(修改my.conf)

数据过高(已经在软件层面充分调优,但仍不能面对高并发场景,可以考虑分表分库分散服务器压力)

接下来我们介绍下sql查询优化。虽然sql查询优化技术很多,但是大致不离 物理查查询优化 和 逻辑查询优化 两大块。


物理查询优化:通过索引和表连接方式进行优化

逻辑查询优化:通过sql语句的等价代换,实现数据库查询的优化。

2️⃣数据准备

学员表插50万 条, 班级表插1万条。


(1)建表

#班级表
CREATE TABLE `class` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`className` VARCHAR(30) DEFAULT NULL,
`address` VARCHAR(40) DEFAULT NULL,
`monitor` INT NULL ,
PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;
#学员表
CREATE TABLE `student` (
`id` INT(11) NOT NULL AUTO_INCREMENT,
`stuno` INT NOT NULL ,
`name` VARCHAR(20) DEFAULT NULL,
`age` INT(3) DEFAULT NULL,
`classId` INT(11) DEFAULT NULL,
PRIMARY KEY (`id`)
#CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

(2)设置参数

命令开启:允许创建函数设置

set global log_bin_trust_function_creators=1;   
# 不加global只是当前窗口有效。

(3)创建函数

保证每条数据都不同

#随机产生字符串
DELIMITER //
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN  
DECLARE chars_str VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
DECLARE return_str VARCHAR(255) DEFAULT '';
DECLARE i INT DEFAULT 0;
WHILE i < n DO 
SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1)); 
SET i = i + 1;
END WHILE;
RETURN return_str;
END //
DELIMITER ;
#假如要删除
#drop function rand_string;

随机产生班级编号

#用于随机产生多少到多少的编号
DELIMITER //
CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11)
BEGIN 
DECLARE i INT DEFAULT 0; 
SET i = FLOOR(from_num +RAND()*(to_num - from_num+1))  ;
RETURN i; 
END //
DELIMITER ;
#假如要删除
#drop function rand_num;

(4)创建存储过程

创建往stu表中插入数据的存储过程

#创建往stu表中插入数据的存储过程
DELIMITER //
CREATE PROCEDURE insert_stu(  START INT , max_num INT )
BEGIN 
  DECLARE i INT DEFAULT 0; 
  SET autocommit = 0;   #设置手动提交事务
  REPEAT  #循环
  SET i = i + 1;  #赋值
  INSERT INTO student (stuno, name ,age ,classId ) VALUES
  ((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000)); 
  UNTIL i = max_num 
  END REPEAT; 
  COMMIT;  #提交事务
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_stu;

创建往class表中插入数据的存储过程

#执行存储过程,往class表添加随机数据
DELIMITER //
CREATE PROCEDURE `insert_class`( max_num INT )
BEGIN 
  DECLARE i INT DEFAULT 0; 
  SET autocommit = 0;  
  REPEAT 
  SET i = i + 1; 
  INSERT INTO class ( classname,address,monitor ) VALUES
  (rand_string(8),rand_string(10),rand_num(1,100000)); 
  UNTIL i = max_num 
  END REPEAT; 
  COMMIT;
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_class;

5)调用存储过程

往class表添加1万条数据

#执行存储过程,往class表添加1万条数据 
CALL insert_class(10000);

往stu表添加50万条数据,这个时间会稍微有点长,请耐心等待哟。

#执行存储过程,往stu表添加50万条数据 
CALL insert_stu(100000,500000);

(6)删除某表上的索引

创建删除索引存储过程。这是为了方便我们的学习,因为我们在演示某个索引的效果时,可能需要删除其它索引,如果需要一个个手工删除,就太费劲了

DELIMITER //
CREATE  PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200))
BEGIN
   DECLARE done INT DEFAULT 0;
   DECLARE ct INT DEFAULT 0;
   DECLARE _index VARCHAR(200) DEFAULT '';
   DECLARE _cur CURSOR FOR  SELECT  index_name  FROM
information_schema.STATISTICS  WHERE table_schema=dbname AND table_name=tablename AND
seq_in_index=1 AND  index_name <>'PRIMARY' ;
#每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束
   DECLARE  CONTINUE HANDLER FOR NOT FOUND set done=2 ;   
#若没有数据返回,程序继续,并将变量done设为2
    OPEN _cur;
    FETCH _cur INTO _index;
    WHILE _index<>'' DO
       SET @str = CONCAT("drop index " , _index , " on " , tablename );
       PREPARE sql_str FROM @str ;
       EXECUTE sql_str;
       DEALLOCATE PREPARE sql_str;
       SET _index='';
       FETCH _cur INTO _index;
    END WHILE;
 CLOSE _cur;
END //
DELIMITER ;

执行存储过程(可以先保留不执行)

CALL proc_drop_index("dbname","tablename");
• 1

3️⃣索引失效的情况

这里我们以InnoDB的B+树的索引结构作为讲解的重点,讲解索引失效的案例(3.1讲解索引最佳的实践)。之所以会出现索引失效的情况,其实是因为我们的优化器经过了成本开销的计算,决定不用索引。用不用索引都是优化器说了算,Sql语句是否会使用索引,跟数据库版本、数据量和数据选择度都有关系。


3.1 全值匹配我最爱(索引最佳)

全值匹配可以充分的利用组合索引。


在没有建立索引时会进行数据查询速度会比较慢

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND NAME = 'abcd';

QL_NO_CACHE表示不使用查询缓存。

下图是在没有创建索引的情况下,第一条sql的执行效果。其查询时间是0.048s。

下面建立下索引

CREATE INDEX idx_age ON student(age);
CREATE INDEX idx_age_classid ON student(age,classId);
CREATE INDEX idx_age_classid_name ON student(age,classId,NAME);

再次执行查询sql,就可以使用到索引idx_age。并且其查询耗时会变短为0.024s。


执行如下sql。选择的索引则是:idx_age_classid。思考下为什么?


EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4;

这是因为我们在构建索引idx_age_classid的B+树时,会先按照age排序,在按照calssId排序,对于这个sql来说,更加高效。


但是上面的索引可能不生效哦,在数据量较大的情况下,我们进行全值匹配SELECT *,优化器可能经过计算发现,我们使用索引查询所有的数据后,还需要对查找到的数据进行回表操作,性能还不如全表扫描。这里我们没有造这么多数据,所以就不演示效果咯。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
5月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
5月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
204 4
|
4月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
237 6
|
5月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
155 2
|
5月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
247 0
|
3月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
172 3
|
3月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
3月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
856 152
|
4月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。
|
3月前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。