给定一个字符串 s ,给定 n 个单词 word,找出所有子串的开始下标,使得子串包含了给定的所有单词,顺序可以不对应。如果有重复的单词,比如有 [ " foo " , " foo " ] 那么子串也必须含有两个 " foo ",也就是说个数必须相同。
解法一
参考 leetCode 里的 solution)
首先,最直接的思路,判断每个子串是否符合,符合就把下标保存起来,最后返回即可。
如上图,利用循环变量 i ,依次后移,判断每个子串是否符合即可。
怎么判断子串是否符合?这也是这个题的难点了,由于子串包含的单词顺序并不需要固定,如果是两个单词 A,B,我们只需要判断子串是否是 AB 或者 BA 即可。如果是三个单词 A,B,C 也还好,只需要判断子串是否是 ABC,或者 ACB,BAC,BCA,CAB,CBA 就可以了,但如果更多单词呢?那就崩溃了。
链接)的作者提出了,用两个 HashMap 来解决。首先,我们把所有的单词存到 HashMap 里,key 直接存单词,value 存单词出现的个数(因为给出的单词可能会有重复的,所以可能是 1 或 2 或者其他)。然后扫描子串的单词,如果当前扫描的单词在之前的 HashMap 中,就把该单词存到新的 HashMap 中,并判断新的 HashMap 中该单词的 value 是不是大于之前的 HashMap 该单词的 value ,如果大了,就代表该子串不是我们要找的,接着判断下一个子串就可以了。如果不大于,那么我们接着判断下一个单词的情况。子串扫描结束,如果子串的全部单词都符合,那么该子串就是我们找的其中一个。看下具体的例子。我们把 words 存到一个 HashMap 中。
然后遍历子串的每个单词。
第一个单词在 HashMap1 中,然后我们把 foo 存到 HashMap2 中。并且比较此时 foo 的 value 和 HashMap1 中 foo 的 value,1 < 2,所以我们继续扫描。
第二个单词也在 HashMap1 中,然后把 foo 存到 HashMap2 中,因为之前已经存过了,所以更新它的 value 为 2 ,然后继续比较此时 foo 的 value 和 HashMap1 中 foo 的 value,2 <= 2,所以继续扫描下一个单词。
第三个单词也在 HashMap1 中,然后把 foo 存到 HashMap2 中,因为之前已经存过了,所以更新它的 value 为 3,然后继续比较此时 foo 的 value 和 HashMap1 中 foo 的 value,3 > 2,所以表明该字符串不符合。然后判断下个子串就好了。
当然上边的情况都是单词在 HashMap1 中,如果不在的话就更好说了,不在就表明当前子串肯定不符合了,直接判断下个子串就好了。
看一下代码吧
publicList<Integer>findSubstring(Strings, String[] words) { List<Integer>res=newArrayList<Integer>(); intwordNum=words.length; if (wordNum==0) { returnres; } intwordLen=words[0].length(); //HashMap1 存所有单词HashMap<String, Integer>allWords=newHashMap<String, Integer>(); for (Stringw : words) { intvalue=allWords.getOrDefault(w, 0); allWords.put(w, value+1); } //遍历所有子串for (inti=0; i<s.length() -wordNum*wordLen+1; i++) { //HashMap2 存当前扫描的字符串含有的单词HashMap<String, Integer>hasWords=newHashMap<String, Integer>(); intnum=0; //判断该子串是否符合while (num<wordNum) { Stringword=s.substring(i+num*wordLen, i+ (num+1) *wordLen); //判断该单词在 HashMap1 中if (allWords.containsKey(word)) { intvalue=hasWords.getOrDefault(word, 0); hasWords.put(word, value+1); //判断当前单词的 value 和 HashMap1 中该单词的 valueif (hasWords.get(word) >allWords.get(word)) { break; } } else { break; } num++; } //判断是不是所有的单词都符合条件if (num==wordNum) { res.add(i); } } returnres; }
时间复杂度:假设 s 的长度是 n,words 里有 m 个单词,那么时间复杂度就是 O(n * m)。
空间复杂度:两个 HashMap,假设 words 里有 m 个单词,就是 O(m)。
总
这道题最大的亮点就是应用了 HashMap 了吧,使得我们不再纠结于子串包含单词的顺序。然后对于算法的优化上,还是老思路,去分析哪些判断是不必要的,然后把它除之。