python 线程 ~~ ~~~为面试开辟VIP通道~~~~~测试、死锁、全局变量共享、守护主线程等。。。。。。(1)

简介: 线程(英语:thread)是操作系统能够进行运算调度的最小单位。线程很重要,通过本篇文章可以让你们很好的了解线程的传参、线程执行规则、守护主线程、线程间共享全局变量、进程互斥锁、死锁进程怎么解决。希望对你们有所帮助。

在了解线程之间的操作及进程死锁之前先来了解一下什么是进程?以下是官方的解释。

线程(英语:thread)是操作系统能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。在Unix System V及SunOS中也被称为轻量进程(lightweight processes),但轻量进程更多指内核线程(kernel thread),而把用户线程(user thread)称为线程。

线程是独立调度和分派的基本单位。线程可以为操作系统内核调度的内核线程,如Win32线程;由用户进程自行调度的用户线程,如Linux平台的POSIX Thread;或者由内核与用户进程,如Windows 7的线程,进行混合调度。

同一进程中的多条线程将共享该进程中的全部系统资源,如虚拟地址空间,文件描述符和信号处理等等。但同一进程中的多个线程有各自的调用栈(call stack),自己的寄存器环境(register context),自己的线程本地存储(thread-local storage)。

一个进程可以有很多线程,每条线程并行执行不同的任务。

在多核或多CPU,或支持Hyper-threading的CPU上使用多线程程序设计的好处是显而易见,即提高了程序的执行吞吐率。在单CPU单核的计算机上,使用多线程技术,也可以把进程中负责I/O处理、人机交互而常被阻塞的部分与密集计算的部分分开来执行,编写专门的workhorse线程执行密集计算,从而提高了程序的执行效率。


看着是不是非常的晕,没关系,下面让我们用实例来享受线程带来的舒适。

1、线程之元组传参

# TODO                鸟欲高飞,必先展翅
# TODO                 向前的人 :Jhon
#  TODO 元组
import threading
import time
def task(count):
    for i in range(count):
        print("正在工作")
        time.sleep(0.2)
    else:
        print("工作结束")
if __name__ == '__main__':
    #创建子线条程
    task_thred=threading.Thread(target=task,args=(5,))
    task_thred.start()

结果

#   TODO  字典
import threading
import time
def task(count):
    for i in range(count):
        print("正在工作")
        time.sleep(0.2)
    else:
        print("工作结束")
if __name__ == '__main__':
    #创建子进程
    task_thred=threading.Thread(target=task,kwargs={"count":6})
    task_thred.start()

因为

微信图片_20221010125003.png

结果

微信图片_20221010125052.png

2、线程之字典传参

task_thred=threading.Thread(target=task,kwarg={"count":6})创建子线程并将字典{“count”:6}传给task(count)函数,函数中count形参接收。其中target=task,target就是目标,也就是目标函数的意思。字典就类似于json字符串,找个网页单机右键检查找到网络下面的全部,找一个js文件打开(可以不一定是js文件,其他的也可以)刷新一下你就可以发现标头里的都是以字符串显示的微信图片_20221010125132.png

image.png

task_thred.start()就是将上面创建的线程开启,注意一定要开启线程,不然线程开启不了程序无法执行。time.sleep(0.2),休眠0.2秒,看起来卡顿卡顿的,更好的看出进程执行的过程

3、线程执行规则

很显然是无序的,线程和进程都是用于资源调度,是随机分配的,所以是都是无序的。下面通过例子来看一下。image.png

#  TODO  线程之间执行时无序的
import threading
import time
def work1():
    time.sleep(1)
    print("当前的线程是:",threading.current_thread().name)
if __name__ == '__main__':
    for _ in range(5):
        work_thred=threading.Thread(target=work1)
        work_thred.start()

结果:

第一次执行结果image.png

第二次执行结果:

image.png

我们对比两次的执行结果可以发现第一次执行的线程顺序是: 4->5->1->3->2,而蒂维茨执行的县城顺序是: 3->5->2->1->4,很显然两次的执行顺序不一致,所以线程的执行是没有顺序的

4、测试主次线程权限,如何消除权限???又如何巩固主线程的掌控权

测试主线程是否会等待子线程执行完毕关闭,通过下面的例子你可以很好的了解。

# TODO 测试主线程是否会等待子线程执行完毕关闭
import time
import threading
def show_info():
    for i in range(5):
        print("test,",i)
        time.sleep(1)
if __name__ == '__main__':
    show_thted=threading.Thread(target=show_info)
    show_thted.start()
    time.sleep(1.5)
    print("结束")

结果:

image.png

我们可以发现主线程结束后,子进程也停止了执行,达到预期目的,方法可行。

4.1、方法一:

创建进程的时候加入守护进程daemon

# TODO 测试主线程是否会等待子线程执行完毕关闭
import time
import threading
def show_info():
    for i in range(5):
        print("test,",i)
        time.sleep(1)
if __name__ == '__main__':
    show_thted=threading.Thread(target=show_info,daemon=True)
    show_thted.start()
    time.sleep(1.5)
    print("结束")

结果:

image.png

我们可以发现主线程结束后,子进程也停止了执行,达到预期目的,方法可行

4.2、方法二

难道必须在创建进程的时候就要放入守护进程吗?

# TODO 测试主线程是否会等待子线程执行完毕关闭
import time
import threading
def show_info():
    for i in range(5):
        print("test,",i)
        time.sleep(1)
if __name__ == '__main__':
    show_thted=threading.Thread(target=show_info)
    show_thted.setDaemon(True)
    show_thted.start()
    time.sleep(1.5)
    print("结束")

结果:

image.png这样是不是也可以确保主线程停止后子线程跟着停止,ok,达到效果,方法可行。但是你们有没有发现这样很多余,明明一行代码就可以实现的,为什么要多行代码执行呢,但是作为一个方法,记住还是很有必要的。


目录
相关文章
|
27天前
|
机器学习/深度学习 存储 算法
解锁文件共享软件背后基于 Python 的二叉搜索树算法密码
文件共享软件在数字化时代扮演着连接全球用户、促进知识与数据交流的重要角色。二叉搜索树作为一种高效的数据结构,通过有序存储和快速检索文件,极大提升了文件共享平台的性能。它依据文件名或时间戳等关键属性排序,支持高效插入、删除和查找操作,显著优化用户体验。本文还展示了用Python实现的简单二叉搜索树代码,帮助理解其工作原理,并展望了该算法在分布式计算和机器学习领域的未来应用前景。
|
2月前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
152 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
22天前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
46 20
|
8天前
|
数据采集 Java 数据处理
Python实用技巧:轻松驾驭多线程与多进程,加速任务执行
在Python编程中,多线程和多进程是提升程序效率的关键工具。多线程适用于I/O密集型任务,如文件读写、网络请求;多进程则适合CPU密集型任务,如科学计算、图像处理。本文详细介绍这两种并发编程方式的基本用法及应用场景,并通过实例代码展示如何使用threading、multiprocessing模块及线程池、进程池来优化程序性能。结合实际案例,帮助读者掌握并发编程技巧,提高程序执行速度和资源利用率。
18 0
|
2月前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
4月前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
4月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
54 0
|
2天前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
2天前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
2天前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。

热门文章

最新文章