Elasticsearch自定义分析器analyzer分词实践

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: Elasticsearch自定义分析器analyzer分词实践

基础知识回顾

分析器的组成结构:


分析器(analyzer)
  - Character filters (字符过滤器)0个或多个
  - Tokenizer (分词器)有且只有一个
  - Token filters (token过滤器)0个或多个

image.png


内置分析器

1、whitespace 空白符分词


POST _analyze
{
  "analyzer": "whitespace", 
  "text": "你好 世界"
}
{
  "tokens": [
    {
      "token": "你好",
      "start_offset": 0,
      "end_offset": 2,
      "type": "word",
      "position": 0
    },
    {
      "token": "世界",
      "start_offset": 3,
      "end_offset": 5,
      "type": "word",
      "position": 1
    }
  ]
}

2、pattern正则表达式分词,默认表达式是\w+(非单词字符)


配置参数


pattern  :  一个Java正则表达式,默认 \W+
flags  :  Java正则表达式flags。比如:CASE_INSENSITIVE 、COMMENTS
lowercase  :  是否将terms全部转成小写。默认true
stopwords  :  一个预定义的停止词列表,或者包含停止词的一个列表。默认是 _none_
stopwords_path  :  停止词文件路径
// 拆分中文不正常
POST _analyze
{
  "analyzer": "pattern", 
  "text": "你好世界"
}
{
  "tokens": []
}
// 拆分英文正常
POST _analyze
{
  "analyzer": "pattern", 
  "text": "hello world"
}
{
  "tokens": [
    {
      "token": "hello",
      "start_offset": 0,
      "end_offset": 5,
      "type": "word",
      "position": 0
    },
    {
      "token": "world",
      "start_offset": 6,
      "end_offset": 11,
      "type": "word",
      "position": 1
    }
  ]
}
// 在索引上自定义分析器-竖线分隔
PUT my-blog
{
  "settings": {
    "analysis": {
      "analyzer": {
        "vertical_line": {
          "type": "pattern",
          "pattern": "\\|"
        }
      }
    }
  },
  "mappings": {
    "doc": {
      "properties": {
        "content": {
          "type": "text",
          "analyzer": "vertical_line"
        }
      }
    }
  }
}
// 测试索引分析器 
POST /blog-v4/_analyze
{
  "analyzer": "vertical_line",
  "text": "你好|世界"
}
POST /blog-v4/_analyze
{
  "field": "content",
  "text": "你好|世界"
}
// 两者结果都是
{
  "tokens": [
    {
      "token": "你好",
      "start_offset": 0,
      "end_offset": 2,
      "type": "word",
      "position": 0
    },
    {
      "token": "世界",
      "start_offset": 3,
      "end_offset": 5,
      "type": "word",
      "position": 1
    }
  ]

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
自然语言处理 大数据 应用服务中间件
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
258 5
|
自然语言处理 Java 网络架构
elasticsearch学习三:elasticsearch-ik分词器的自定义配置 分词内容
这篇文章是关于如何自定义Elasticsearch的ik分词器配置以满足特定的中文分词需求。
641 0
elasticsearch学习三:elasticsearch-ik分词器的自定义配置 分词内容
|
11月前
|
存储 运维 监控
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
中信银行信用卡中心每日新增日志数据 140 亿条(80TB),全量归档日志量超 40PB,早期基于 Elasticsearch 构建的日志云平台,面临存储成本高、实时写入性能差、文本检索慢以及日志分析能力不足等问题。因此使用 Apache Doris 替换 Elasticsearch,实现资源投入降低 50%、查询速度提升 2~4 倍,同时显著提高了运维效率。
558 3
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
|
12月前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案
660 3
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
|
11月前
|
数据采集 人工智能 运维
从企业级 RAG 到 AI Assistant,阿里云Elasticsearch AI 搜索技术实践
本文介绍了阿里云 Elasticsearch 推出的创新型 AI 搜索方案。
831 5
|
测试技术 API 开发工具
ElasticSearch的IK分词器
ElasticSearch的IK分词器
241 7
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
1218 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
消息中间件 监控 关系型数据库
MySQL数据实时同步到Elasticsearch:技术深度解析与实践分享
在当今的数据驱动时代,实时数据同步成为许多应用系统的核心需求之一。MySQL作为关系型数据库的代表,以其强大的事务处理能力和数据完整性保障,广泛应用于各种业务场景中。然而,随着数据量的增长和查询复杂度的提升,单一依赖MySQL进行高效的数据检索和分析变得日益困难。这时,Elasticsearch(简称ES)以其卓越的搜索性能、灵活的数据模式以及强大的可扩展性,成为处理复杂查询需求的理想选择。本文将深入探讨MySQL数据实时同步到Elasticsearch的技术实现与最佳实践。
635 0
|
8月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
1362 64
|
7月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
3345 0