什么是HADOOP、产生背景、在大数据、云计算中的位置和关系、国内外HADOOP应用案例介绍、就业方向、生态圈以及各组成部分的简介(学习资料中的文档材料)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 1. HADOOP背景介绍1. 1.1 什么是HADOOP1.        HADOOP是apache旗下的一套开源软件平台2.        HADOOP提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理3.        HADOOP的核心组件有A.       HDFS(分布式文件系统)B.       YARN(运算资源调度系统)C.  

1. HADOOP背景介绍

1. 1.1 什么是HADOOP

1.        HADOOP是apache旗下的一套开源软件平台

2.        HADOOP提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理

3.        HADOOP的核心组件有

A.       HDFS(分布式文件系统)

B.       YARN(运算资源调度系统)

C.       MAPREDUCE(分布式运算编程框架)

4.        广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈

2. 1.2 HADOOP产生背景

1.        HADOOP最早起源于Nutch。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。

2.        2003年、2004年谷歌发表的两篇论文为该问题提供了可行的解决方案

——分布式文件系统(GFS),可用于处理海量网页的存储

——分布式计算框架MAPREDUCE,可用于处理海量网页的索引计算问题。

3.        Nutch的开发人员完成了相应的开源实现HDFS和MAPREDUCE,并从Nutch中剥离成为独立项目HADOOP,到2008年1月,HADOOP成为Apache顶级项目,迎来了它的快速发展期。

3. 1.3 HADOOP在大数据、云计算中的位置和关系

1.        云计算是分布式计算、并行计算、网格计算、多核计算、网络存储、虚拟化、负载均衡等传统计算机技术和互联网技术融合发展的产物。借助IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等业务模式,把强大的计算能力提供给终端用户。

2.        现阶段,云计算的两大底层支撑技术为“虚拟化”和“大数据技术

3.        而HADOOP则是云计算的PaaS层的解决方案之一,并不等同于PaaS,更不等同于云计算本身。

 

4. 1.4 国内外HADOOP应用案例介绍

1、HADOOP应用于数据服务基础平台建设

 

2/HADOOP用于用户画像

 

3、HADOOP用于网站点击流日志数据挖掘

金融行业:个人征信分析

证券行业:投资模型分析

交通行业:车辆、路况监控分析

电信行业:用户上网行为分析

......

 

 

总之:hadoop并不会跟某种具体的行业或者某个具体的业务挂钩,它只是一种用来做海量数据分析处理的工具

5. 1.5 国内HADOOP的就业情况分析

1、  HADOOP就业整体情况

A.       大数据产业已纳入国家十三五规划

B.       各大城市都在进行智慧城市项目建设,而智慧城市的根基就是大数据综合平台

C.       互联网时代数据的种类,增长都呈现爆发式增长,各行业对数据的价值日益重视

D.       相对于传统JAVAEE技术领域来说,大数据领域的人才相对稀缺

E.        随着现代社会的发展,数据处理和数据挖掘的重要性只会增不会减,因此,大数据技术是一个尚在蓬勃发展且具有长远前景的领域

 

 

2、  HADOOP就业职位要求

大数据是个复合专业,包括应用开发、软件平台、算法、数据挖掘等,因此,大数据技术领域的就业选择是多样的,但就HADOOP而言,通常都需要具备以下技能或知识:

A.       HADOOP分布式集群的平台搭建

B.       HADOOP分布式文件系统HDFS的原理理解及使用

C.       HADOOP分布式运算框架MAPREDUCE的原理理解及编程

D.       Hive数据仓库工具的熟练应用

E.        Flume、sqoop、oozie等辅助工具的熟练使用

F.        Shell/python等脚本语言的开发能力


6. 1.6 HADOOP生态圈以及各组成部分的简介

各组件简介[M1] 

 

 

重点组件:

HDFS:分布式文件系统

MAPREDUCE:分布式运算程序开发框架

HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具

HBASE:基于HADOOP的分布式海量数据库

ZOOKEEPER:分布式协调服务基础组件

Mahout:基于mapreduce/spark/flink等分布式运算框架的机器学习算法库

Oozie:工作流调度框架

Sqoop:数据导入导出工具

Flume:日志数据采集框架

 

 

 


HADOOP(hdfs、MAPREDUCE、yarn)  元老级大数据处理技术框架,擅长离线数据分析

Zookeeper  分布式协调服务基础组件

Hbase 分布式海量数据库,离线分析和在线业务通吃

Hive sql 数据仓库工具,使用方便,功能丰富,基于MR延迟大

Sqoop数据导入导出工具

Flume数据采集框架

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
7月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
292 79
|
6月前
|
人工智能 运维 架构师
技能革命3.0时代:云计算就业岗位有哪些?
本文探讨云计算就业市场的深层逻辑,从岗位体系、AI赋能及技术局限性应对策略三方面解析。云计算岗位涵盖基础设施、平台服务、数据智能与应用创新四层,需复合型能力;AI不仅提供技术工具,还推动教育范式变革,助力跨界融合;面对技术局限,分步验证与经验洞察双管齐下。未来就业将向技能多元化、自主性增强和社会价值再定义方向进化,强调个体能力生态的持续成长。
|
11月前
|
边缘计算 自动驾驶 物联网
探索云计算的边缘计算:定义、优势及应用前景
探索云计算的边缘计算:定义、优势及应用前景
|
10月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
419 4
|
11月前
|
机器学习/深度学习 存储 大数据
云计算与大数据技术的融合应用
云计算与大数据技术的融合应用
|
11月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
454 2
|
11月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
400 1
|
12月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
341 1
|
11月前
|
边缘计算 监控 自动驾驶
揭秘云计算中的边缘计算:架构、优势及应用场景
揭秘云计算中的边缘计算:架构、优势及应用场景
|
11月前
|
API 数据处理 开发工具
云计算在金融行业的应用与挑战
云计算在金融行业的应用与挑战
687 0

热门文章

最新文章