通过sqoop将mysql数据导入到hive中进行计算示例

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 通过sqoop将mysql数据导入到hive中进行计算示例

image.png

步骤:

mysql数据准备

account账号表

detail收支数据表

CREATE TABLE `account` (
  `id` int(11) PRIMARY KEY AUTO_INCREMENT,
  `account` varchar(20),
  `name` varchar(5),
  `age` int(3)
);
insert into account(account, name, age) values("tom@qq.com", "Tom", 23);
insert into account(account, name, age) values("jack@qq.com", "Jack", 20);
insert into account(account, name, age) values("jone@qq.com", "Jone", 22);
insert into account(account, name, age) values("jimi@qq.com", "Jimi", 25);
insert into account(account, name, age) values("black@qq.com", "Black", 24);
select * from account;
CREATE TABLE `detail` (
  `id` int(11) PRIMARY KEY AUTO_INCREMENT,
  `account` varchar(20),
  `income` double,
  `expenses` double,
  `time` varchar(10)
);
insert into detail(account, income, expenses, time) values("tom@qq.com", 10, 20, 2018-12-1);
insert into detail(account, income, expenses, time) values("jack@qq.com", 10, 30, 2018-12-4);
insert into detail(account, income, expenses, time) values("jone@qq.com", 13, 22, 2018-12-3);
insert into detail(account, income, expenses, time) values("jimi@qq.com", 45, 25, 2018-12-2);
insert into detail(account, income, expenses, time) values("black@qq.com", 34, 24, 2018-12-1);
insert into detail(account, income, expenses, time) values("tom@qq.com", 50, 20, 2018-12-1);
select * from detail;

创建hive表

create table account (
  id int, 
  account string, 
  name string, 
  age int
) row format delimited fields terminated by '\t';
create table detail (
  id int, 
  account string, 
  income double, 
  expenses double, 
  time string
) row format delimited fields terminated by '\t';

通过sqoop将mysq当中的数据直接导入到hive当中

sqoop import 
--connect jdbc:mysql://localhost:3306/mydata 
--username root 
--password 123456 
--table account 
--hive-import 
--hive-overwrite 
--hive-table account 
--fields-terminated-by '\t'
sqoop import --connect jdbc:mysql://localhost:3306/mydata --username root --password 123456 --table detail --hive-import --hive-overwrite --hive-table detail --fields-terminated-by '\t'
1

计算结果,mysql和hive中计算结果一致

select a.account, a.name, d.total 
from account as a 
join(
  select account, sum(income - expenses) as total 
  from detail group by account
) as d 
on a.account=d.account;

mysql计算结果


+--------------+-------+-------+
| account      | name  | total |
+--------------+-------+-------+
| black@qq.com | Black |    10 |
| jack@qq.com  | Jack  |   -20 |
| jimi@qq.com  | Jimi  |    20 |
| jone@qq.com  | Jone  |    -9 |
| tom@qq.com   | Tom   |    20 |
+--------------+-------+-------+

hive计算结果


black@qq.com  Black 10.0
jack@qq.com Jack  -20.0
jimi@qq.com Jimi  20.0
jone@qq.com Jone  -9.0
tom@qq.com  Tom  20.0

报错及解决

报错:


/tmp/hive on HDFS should be writable.

解决


> hadoop fs -chmod -R 777 /tmp

参考

hive启动出现权限错误 /tmp/hive on HDFS should be writable.


报错:


Could not load org.apache.hadoop.hive.conf.HiveConf. Make sure HIVE_CONF_DIR

解决:

往/etc/profile最后加入


export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$HIVE_HOME/lib/*

然后刷新配置,source /etc/profile

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
4月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
269 0
|
2月前
|
SQL 关系型数据库 MySQL
如何将Excel表的数据导入RDS MySQL数据库?
本文介绍如何通过数据管理服务DMS将Excel文件(转为CSV格式)导入RDS MySQL数据库,涵盖建表、编码设置、导入模式选择及审批执行流程,并提供操作示例与注意事项。
|
3月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
331 10
|
4月前
|
关系型数据库 MySQL Java
字节面试: MySQL 百万级 导入发生的 “死锁” 难题如何解决?“2序4拆”,彻底攻克
字节面试: MySQL 百万级 导入发生的 “死锁” 难题如何解决?“2序4拆”,彻底攻克
字节面试: MySQL 百万级 导入发生的 “死锁” 难题如何解决?“2序4拆”,彻底攻克
|
4月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
141 0
|
7月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
357 28
|
6月前
|
存储 SQL 缓存
mysql数据引擎有哪些
MySQL 提供了多种存储引擎,每种引擎都有其独特的特点和适用场景。以下是一些常见的 MySQL 存储引擎及其特点:
192 0
|
9月前
|
Java 关系型数据库 MySQL
SpringBoot 通过集成 Flink CDC 来实时追踪 MySql 数据变动
通过详细的步骤和示例代码,您可以在 SpringBoot 项目中成功集成 Flink CDC,并实时追踪 MySQL 数据库的变动。
2366 45
|
8月前
|
存储 SQL 关系型数据库
【YashanDB知识库】MySQL迁移至崖山char类型数据自动补空格问题
**简介**:在MySQL迁移到崖山环境时,若字段类型为char(2),而应用存储的数据仅为'0'或'1',查询时崖山会自动补空格。原因是mysql的sql_mode可能启用了PAD_CHAR_TO_FULL_LENGTH模式,导致保留CHAR类型尾随空格。解决方法是与应用确认数据需求,可将崖山环境中的char类型改为varchar类型以规避补空格问题,适用于所有版本。

推荐镜像

更多