《人脸识别原理及算法——动态人脸识别系统研究》—第5章5.5节小结

简介:

本节书摘来自异步社区《人脸识别原理及算法——动态人脸识别系统研究》一书中的第5章5.5节小结,作者 沈理 , 刘翼光 , 熊志勇,更多章节内容可以访问云栖社区“异步社区”公众号查看。

5.5 小结
人脸识别原理及算法——动态人脸识别系统研究
本章在实验的基础上对PCA方法在人脸图像识别中的应用作了深刻揭示,主要讨论了训练样本效应、光照、尺度、旋转等因素对识别的影响,并指出对于不同的干扰会形成不同的图像空间,且图像空间之间存在一定距离,由此使得PCA方法在应用于不同图像空间的识别时效果较差。因此在处理这些干扰情况时,需要对图像做相应的预处理,以使待识图像与库中训练样本处于同一空间,或者在库中保存每个图像的多个样本,但这种方法存储空间开销较大,并且对于无法得到多个样本的情况很难应用。

PCA方法作为一种样本统计分析技术,能够提取样本集合的主成分,并利用这些主成分来表示相应的样本空间,应用于整个人脸图像集合,可得到整个人脸图像空间的主成分;同时也可应用人脸图像的局部特征集合,得到这些局部特征空间的主成分,根据不同空间的距离原则,可以进行人脸局部特征的提取。

同时,如Penev[52]所指出的,PCA方法是一种全局分析技术,不能提取样本集合的拓扑结构信息以及每个像素点处的局部信息,对于图像的偏移、缺失、旋转、光照等变化都看作一种全局变化,故其无法处理图像局部变化的情况。但如果利用人脸图像局部特征进行识别,就可以较好地利用样本集合的拓扑结构,得到样本的局部结构信息,并用于识别。这些局部特征对于图像的全局变化有一定的抗干扰能力,实验5.28充分证明了这一点。

本文仅用于学习和交流目的,不代表异步社区观点。非商业转载请注明作译者、出处,并保留本文的原始链接。

相关文章
|
25天前
|
机器学习/深度学习 算法 计算机视觉
YOLOv3的算法原理是怎么样的
YOLOv3的算法原理是怎么样的
|
2天前
|
机器学习/深度学习 存储 算法
【机器学习】深入探索机器学习:线性回归算法的原理与应用
【机器学习】深入探索机器学习:线性回归算法的原理与应用
|
3天前
|
存储 缓存 算法
LRU(Least Recently Used)算法原理
LRU(Least Recently Used)算法原理
4 0
|
3天前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
7天前
|
存储 算法 数据挖掘
【贪心算法经典应用】哈夫曼编码原理与算法详解 python
【贪心算法经典应用】哈夫曼编码原理与算法详解 python
|
13天前
|
存储 算法 Java
红黑树原理和算法分析
红黑树原理和算法分析
16 0
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
详解AI作画算法原理
详解AI作画算法原理
30 1
|
27天前
|
算法 安全 网络协议
https原理--RSA密钥协商算法
https原理--RSA密钥协商算法
25 0
|
27天前
|
机器学习/深度学习 编解码 算法
算法工程师面试问题总结 | YOLOv5面试考点原理全解析
本文给大家带来的百面算法工程师是深度学习目标检测YOLOv5面试总结,文章内总结了常见的提问问题,旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中,我们还将介绍一些常见的深度学习目标检测面试问题,并提供参考的回答及其理论基础,以帮助求职者更好地准备面试。通过对这些问题的理解和回答,求职者可以展现出自己的深度学习目标检测领域的专业知识、解决问题的能力以及对实际应用场景的理解。同时,这也是为了帮助求职者更好地应对深度学习目标检测岗位的面试挑战,提升面试的成功率和竞争力。
|
1月前
|
算法 网络协议 数据建模
【计算机网络】—— IP协议及动态路由算法(下)
【计算机网络】—— IP协议及动态路由算法(下)
23 0