数据分析三剑客【AIoT阶段一(下)】(十万字博文 保姆级讲解)—Pandas—pandas进阶(十三)

简介: 你好,感谢你能点进来本篇博客,请不要着急退出,相信我,如果你有一定的 Python 基础,想要学习 Python数据分析的三大库:numpy,pandas,matplotlib;这篇文章不会让你失望,本篇博客是 【AIoT阶段一(下)】 的内容:Python数据分析,

3.pandas进阶

3.1 数据重塑

🚩数据重塑其实就是行变列,列变行

3.1.1 一般数据

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0, 100, size = (10, 3)),
                     index = list('ABCDEFHIJK'),
                     columns = ['Python', 'Tensorflow', 'Keras'])
display(df)
# 转置
df.T

18.png

3.1.2 多层索引

df2 = pd.DataFrame(data = np.random.randint(0, 100, size = (20, 3)),
                   index = pd.MultiIndex.from_product([list('ABCDEFHIJK'), 
                                                       ['期中', '期末']]),#多层索引
                   columns = ['Python', 'Tensorflow', 'Keras'])
df2

19.png

我们来解释一下这个复杂的代码:ndex = pd.MultiIndex.from_product([list('ABCDEFHIJK'), ['期中', '期末']]),我们的第一个参数:ABCDEFHIJK,共是 10 个字母,第二个参数是两个字符串,所以我们一共会有 20行的数据,这正好对应了前面的代码size = (20, 3),读者自行理解下面这个代码:

df3 = pd.DataFrame(data = np.random.randint(0, 100, size = (10, 6)),
                   index = list('ABCDEFHIJK'),
                   columns = pd.MultiIndex.from_product([['Python', 'Math', 'English'],
                                                         ['期中', '期末']]))
df3

20.png

我们用 unstack() 完成多层索引行变列的数据重塑:

# 行索引变列索引,结构改变
# 默认情况下,最里层调整
df2.unstack()

21.png

可以看出来,只是把行索引最里层的期中期末 移到了列索引的位置,我们也可以把行索引外层的 ABCDEFHIJK 移动至列索引的位置:

df2.unstack(level = 0)

image.png

我们用 stack() 完成多层索引列变行的数据重塑:

# 列索引变行索引,结构改变
# 默认情况下,最里层调整
df3.stack()

22.png

同样,我们通过调整参数可以实现使得列索引的最外层变成行索引:

df3.stack(level = 0)

23.png

3.1.3 多层索引的运算

sum() 求和运算:

df2.sum()

image.png

当然,这样的数据一般是没有意义的,我们一般想要求出每一位同学的总分,而不是每门科目的总分:

df2.sum(axis = 1)

24.png

# 期中,期末消失
# 计算的是每个人,期中期末的总分数
df2.sum(level = 0)

image.png

mean() 用来计算平均分:

# 同学消失
# 计算的是所有同学期中期末平均分
df2.mean(level = 1)

image.png

接下来简单介绍一下如何取数据:

# df3是多层列索引,可以直接使用[],根据层级关系取数据
# 取出 A 同学的 Python 科目的期中成绩
df3['Python', '期中']['A']

image.png

df2['Python']['A', '期中']

image.png

目录
相关文章
|
8天前
|
数据采集 数据可视化 数据挖掘
Pandas数据应用:天气数据分析
本文介绍如何使用 Pandas 进行天气数据分析。Pandas 是一个强大的 Python 数据处理库,适合处理表格型数据。文章涵盖加载天气数据、处理缺失值、转换数据类型、时间序列分析(如滚动平均和重采样)等内容,并解决常见报错如 SettingWithCopyWarning、KeyError 和 TypeError。通过这些方法,帮助用户更好地进行气候趋势预测和决策。
102 71
|
7天前
|
存储 数据采集 数据可视化
Pandas数据应用:电子商务数据分析
本文介绍如何使用 Pandas 进行电子商务数据分析,涵盖数据加载、清洗、预处理、分析与可视化。通过 `read_csv` 等函数加载数据,利用 `info()` 和 `describe()` 探索数据结构和统计信息。针对常见问题如缺失值、重复记录、异常值等,提供解决方案,如 `dropna()`、`drop_duplicates()` 和正则表达式处理。结合 Matplotlib 等库实现数据可视化,探讨内存不足和性能瓶颈的应对方法,并总结常见报错及解决策略,帮助提升电商企业的数据分析能力。
103 73
|
2月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
85 0
|
4天前
|
存储 数据采集 数据可视化
Pandas数据应用:医疗数据分析
Pandas是Python中强大的数据操作和分析库,广泛应用于医疗数据分析。本文介绍了使用Pandas进行医疗数据分析的常见问题及解决方案,涵盖数据导入、预处理、清洗、转换、可视化等方面。通过解决文件路径错误、编码不匹配、缺失值处理、异常值识别、分类变量编码等问题,结合Matplotlib等工具实现数据可视化,并提供了解决常见报错的方法。掌握这些技巧可以提高医疗数据分析的效率和准确性。
42 22
|
8天前
|
数据采集 数据可视化 索引
Pandas数据应用:股票数据分析
本文介绍了如何使用Pandas库进行股票数据分析。首先,通过pip安装并导入Pandas库。接着,从本地CSV文件读取股票数据,并解决常见的解析错误。然后,利用head()、info()等函数查看数据基本信息,进行数据清洗,处理缺失值和重复数据。再者,结合Matplotlib和Seaborn进行数据可视化,绘制收盘价折线图。最后,进行时间序列分析,设置日期索引、重采样和计算移动平均线。通过这些步骤,帮助读者掌握Pandas在股票数据分析中的应用。
40 5
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
51 2
|
2月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
57 2
|
2月前
|
数据采集 数据可视化 数据挖掘
Python数据分析:Pandas库实战指南
Python数据分析:Pandas库实战指南
|
2月前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南