3_python高阶_线程—多线程-共享全局变量

简介: python高阶_线程—多线程-共享全局变量

[TOC]

一、多线程-共享全局变量

import threading
import time

# 定义一个全局变量
g_num = 100


def test1():
    global g_num
    g_num += 1
    print("-----in test1 g_num=%d----" % g_num)


def test2():
    print("-----in test2 g_num=%d=----" % g_num)


def main():
    t1 = threading.Thread(target=test1)
    t2 = threading.Thread(target=test2)

    t1.start()
    time.sleep(1)   # 延时一会,保证t1线程中的事情做完

    t2.start()
    time.sleep(1)

    print("-----in main Thread g_num = %d---" % g_num)

if __name__ == "__main__":
    main()

运行结果:

-----in test1 g_num=101----
-----in test2 g_num=101=----
-----in main Thread g_num = 101---

1.1 全局变量

def test():
    global num
    num += 100

def test2():
    nums.append(33)


print(num)   # 100
print(nums)  # [11, 22]

test()
test2()

print(num)   # 200
print(nums)  # [11, 22, 33]

在一个函数中,对全局变量进行修改时侯,到底是否需要使用global进行说明,要看是否对全局变量的指向进行修改。

  • 如果修改了指向,即让全局变量指向了一个新的地方,必须使用global。
  • 如果仅仅是修改了指向的空间中的数据,此时不用必须使用global。

二、列表当做实参传递到线程中

import threading
import time

def test1(temp):
    temp.append(33)
    print("-----in test1 temp=%s----" % str(temp))


def test2(temp):
    print("-----in test2 temp=%s----" % str(temp))


g_nums = [11, 22]

def main():
    # target指定将来 这个线程去哪个函数执行代码
    # args指定将来调用 函数的时候 传递什么数据过去
    t1 = threading.Thread(target=test1, args=(g_nums,))
    t2 = threading.Thread(target=test2, args=(g_nums,))

    t1.start()
    time.sleep(1)

    t2.start()
    time.sleep(1)

    print("-----in main Thread g_nums = %s---" % str(g_nums))

if __name__ == "__main__":
    main()

运行结果:

-----in test1 temp=[11, 22, 33]----
-----in test2 temp=[11, 22, 33]----
-----in main Thread g_nums = [11, 22, 33]---

总结:

  • 在一个进程内的所有线程共享全局变量,很方便在多个线程间共享数据
  • 缺点就是,线程是对全局变量随意遂改可能造成多线程之间对全局变量的混乱(即线程非安全)

三、多线程-共享全局变量问题-资源竞争

假设两个线程t1和t2都要对全局变量g_num(默认是0)进行加1运算,t1和t2都各对g_num加10次,g_num的最终的结果应该为20。

但是由于是多线程同时操作,有可能出现下面情况:

  1. 在g_num=0时,t1取得g_num=0。此时系统把t1调度为”sleeping”状态,把t2转换为”running”状态,t2也获得g_num=0
  2. 然后t2对得到的值进行加1并赋给g_num,使得g_num=1
  3. 然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给g_num。
  4. 这样导致虽然t1和t2都对g_num加1,但结果仍然是g_num=1

3.1 测试1

import threading
import time

# 定义一个全局变量
g_num = 0


def test1(num):
    global g_num
    for i in range(num):
        g_num += 1
    print("-----in test1 g_num=%d----" % g_num)


def test2(num):
    global g_num
    for i in range(num):  # 循环num=100次
        g_num += 1
    print("-----in test2 g_num=%d=----" % g_num)


def main():
    t1 = threading.Thread(target=test1, args=(100,))
    t2 = threading.Thread(target=test2, args=(100,))

    t1.start()
    t2.start()

    # 等待上面的2个线程执行完毕....
    time.sleep(5)

    print("-----in main Thread g_num = %d---" % g_num)

if __name__ == "__main__":
    main()

运行结果:

-----in test1 g_num=100----
-----in test2 g_num=200=----
-----in main Thread g_num = 200---

3.2 测试2

import threading
import time

# 定义一个全局变量
g_num = 0


def test1(num):
    global g_num
    for i in range(num):
        g_num += 1
    print("-----in test1 g_num=%d----" % g_num)


def test2(num):
    global g_num
    for i in range(num):  # 循环num=100次
        g_num += 1
    print("-----in test2 g_num=%d=----" % g_num)


def main():
    t1 = threading.Thread(target=test1, args=(1000000,))
    t2 = threading.Thread(target=test2, args=(1000000,))

    t1.start()
    t2.start()

    # 等待上面的2个线程执行完毕....
    time.sleep(5)

    print("-----in main Thread g_num = %d---" % g_num)

if __name__ == "__main__":
    main()

运行结果:

-----in test1 g_num=1279625----
-----in test2 g_num=1497714=----
-----in main Thread g_num = 1497714---

3.3 结论

  • 如果多个线程同时对同一个全局变量操作,会出现资源竞争问题,从而数据结果会不正确
目录
相关文章
|
15天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
9天前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
28 4
|
14天前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
13 3
|
14天前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
12 2
|
14天前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
27 2
|
14天前
|
Java 开发者
Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点
【10月更文挑战第20天】Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点,重点解析为何实现Runnable接口更具灵活性、资源共享及易于管理的优势。
26 1
|
14天前
|
安全 Java 开发者
Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用
本文深入解析了Java多线程中的`wait()`、`notify()`和`notifyAll()`方法,探讨了它们在实现线程间通信和同步中的关键作用。通过示例代码展示了如何正确使用这些方法,并分享了最佳实践,帮助开发者避免常见陷阱,提高多线程程序的稳定性和效率。
26 1
|
14天前
|
Java
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件成立时被唤醒,从而有效解决数据一致性和同步问题。本文通过对比其他通信机制,展示了 `wait()` 和 `notify()` 的优势,并通过生产者-消费者模型的示例代码,详细说明了其使用方法和重要性。
21 1
|
16天前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
30天前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
38 1
C++ 多线程之初识多线程