Hadoop序列化、概述、自定义bean对象实现序列化接口(Writable)、序列化案例实操、编写流量统计的Bean对象、编写Mapper类、编写Reducer类、编写Driver驱动类

简介: 什么是序列化、为什么要序列化、为什么不用Java的序列化、Hadoop序列化特点:1)紧凑 :高效使用存储空间。2)快速:读写数据的额外开销小。3)互操作:支持多语言的交互、在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。具体实现bean对象序列化步骤如下7步。1)必须实现Writable接口2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造3)重写序列化方法4)重写反序列化方法`5)注意反序列化的顺序和序列化的

12.Hadoop序列化

12.1序列化概述

12.1.1什么是序列化

序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。
反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。

12.1.2为什么要序列化

一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。

12.1.3为什么不用Java的序列化

Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)。

12.1.4Hadoop序列化特点:

(1)紧凑 :高效使用存储空间。
(2)快速:读写数据的额外开销小。
(3)互操作:支持多语言的交互

12.2自定义bean对象实现序列化接口(Writable)

  在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。
具体实现bean对象序列化步骤如下7步。
(1)必须实现Writable接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

public FlowBean() {
    super();
}

(3)重写序列化方法

@Override
public void write(DataOutput out) throws IOException {
    out.writeLong(upFlow);
    out.writeLong(downFlow);
    out.writeLong(sumFlow);
}

(4)重写反序列化方法

@Override
public void readFields(DataInput in) throws IOException {
    upFlow = in.readLong();
    downFlow = in.readLong();
    sumFlow = in.readLong();
}

(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用"\t"分开,方便后续用。
(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。详见后面排序案例。

@Override
public int compareTo(FlowBean o) {
    // 倒序排列,从大到小
    return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

12.3序列化案例实操

12.3.1需求

统计每一个手机号耗费的总上行流量、总下行流量、总流量
(1)输入数据

1    13736230513    192.196.100.1    www.baidu.com    2481    24681    200
2    13846544121    192.196.100.2            264    0    200
3     13956435636    192.196.100.3            132    1512    200
4     13966251146    192.168.100.1            240    0    404
5     18271575951    192.168.100.2    www.baidu.com    1527    2106    200
6     84188413    192.168.100.3    www.baidu.com    4116    1432    200
7     13590439668    192.168.100.4            1116    954    200
8     15910133277    192.168.100.5    www.hao123.com    3156    2936    200
9     13729199489    192.168.100.6            240    0    200
10     13630577991    192.168.100.7    www.shouhu.com    6960    690    200
11     15043685818    192.168.100.8    www.baidu.com    3659    3538    200
12     15959002129    192.168.100.9    www.baidu.com    1938    180    500
13     13560439638    192.168.100.10            918    4938    200
14     13470253144    192.168.100.11            180    180    200
15     13682846555    192.168.100.12    www.qq.com    1938    2910    200
16     13992314666    192.168.100.13    www.gaga.com    3008    3720    200
17     13509468723    192.168.100.14    www.qinghua.com    7335    110349    404
18     18390173782    192.168.100.15    www.sogou.com    9531    2412    200
19     13975057813    192.168.100.16    www.baidu.com    11058    48243    200
20     13768778790    192.168.100.17            120    120    200
21     13568436656    192.168.100.18    www.alibaba.com    2481    24681    200
22     13568436656    192.168.100.19            1116    954    200

在这里插入图片描述(2)输入数据格式:

7     13560436666    120.196.100.99        1116         954            200
id    手机号码        网络ip               上行流量     下行流量     网络状态码

(3)期望输出数据格式

13560436666         1116              954             2070
手机号码               上行流量            下行流量        总流量

12.3.2需求分析

在这里插入图片描述

12.3.3编写MapReduce程序

穿创建一个包 com.summer.mapreduce.writable,然后创建一个java程序,FlowBean

12.3.3.1编写流量统计的Bean对象

package com.summer.mapreduce.writable;

/**
 * @author Redamancy
 * @create 2022-08-23 11:26
 */

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * 1、定义类实现writable接口
 * 2、重写序列化和反序列化
 * 3、重写空参构造
 * 4、toString方法
 */
public class FlowBean implements Writable {
    private long upFlow;//上行流量
    private long downFlow;//下行流量
    private long sumFlow;//总流量

    //空参构造
    public FlowBean() {
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public void setSumFlow() {
        this.sumFlow = this.downFlow + this.upFlow;
    }

    @Override
    public void write(DataOutput dataOutput) throws IOException {

        dataOutput.writeLong(upFlow);
        dataOutput.writeLong(downFlow);
        dataOutput.writeLong(sumFlow);

    }

    @Override
    public void readFields(DataInput dataInput) throws IOException {

        this.upFlow = dataInput.readLong();
        this.downFlow = dataInput.readLong();
        this.sumFlow = dataInput.readLong();
        
    }

    @Override
    public String toString() {
        return  upFlow + "\t" + downFlow + "\t" + sumFlow;
    }
}

12.3.3.2编写Mapper类

在这里插入图片描述

创建一个FlowMapper类

package com.summer.mapreduce.writable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author Redamancy
 * @create 2022-08-23 22:40
 */
public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {

    private Text outK = new Text();
    private FlowBean outV = new FlowBean();

    @Override
    protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context) throws IOException, InterruptedException {

        //1 获取一行
        //1    13736230513    192.196.100.1    www.baidu.com    2481    24681    200
        String line = value.toString();

        //2 切割
        //1,13736230513,192.196.100.1,www.baidu.com,2481,24681,200
        //2,13846544121,192.196.100.2,264,0,200
        String[] split = line.split("\t");

        //3 抓取想要的数据
        //因为数据有些有网址,有些没有网址,所有从往后前数是最合适的
        //手机号13736230513
        //上行流量和下行流量:2481,24681
        String phone = split[1];
        String up = split[split.length - 3];
        String down = split[split.length - 2];

        //4 封装
        outK.set(phone);
        outV.setUpFlow(Long.parseLong(up));
        outV.setDownFlow(Long.parseLong(down));
        outV.setSumFlow();

        //5 写出
        context.write(outK, outV);
    }
}

12.3.3.3编写Reducer类

在这里插入图片描述
创建一个FlowReducer类

package com.summer.mapreduce.writable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author Redamancy
 * @create 2022-08-23 22:58
 */
public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
    private FlowBean outV = new FlowBean();

    @Override
    protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context) throws IOException, InterruptedException {

        //1 遍历集合累加值
        long totalUp = 0;
        long totalDown = 0;

        for (FlowBean value : values) {
            totalUp += value.getUpFlow();
            totalDown += value.getDownFlow();
        }

        //2 封装outK,outV
        outV.setUpFlow(totalUp);
        outV.setDownFlow(totalDown);
        outV.setSumFlow();

        //3 写出
        context.write(key,outV);
    }
}

12.3.3.4编写Driver驱动类

在这里插入图片描述
创建一个FlowDriver类

package com.summer.mapreduce.writable;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @author Redamancy
 * @create 2022-08-23 23:05
 */
public class FlowDriver {
    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
        //1 获取job
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);

        //2 设置jar包路径
        job.setJarByClass(FlowDriver.class);

        //3 关联mapper和reduccer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

        //4 设置map输出的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        //5 设置最终输出的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        //6 设置输入路径和输出路径
        FileInputFormat.setInputPaths(job, new Path("D:\\Acode\\Hadoop\\input\\Flowphonedata"));
        //输出的路径为空,要是有该文件,则会报错
        FileOutputFormat.setOutputPath(job, new Path("D:\\Acode\\Hadoop\\output\\outputFlowphonedata"));

        //7 提交job
        boolean result = job.waitForCompletion(true);

        System.exit(result ? 0 : 1);
    }
}
目录
相关文章
|
存储 分布式计算 自然语言处理
Hadoop序列化、概述、自定义bean对象实现序列化接口(Writable)、序列化案例实操、编写流量统计的Bean对象、编写Mapper类、编写Reducer类、编写Driver驱动类
Hadoop序列化、概述、自定义bean对象实现序列化接口(Writable)、序列化案例实操、编写流量统计的Bean对象、编写Mapper类、编写Reducer类、编写Driver驱动类
Hadoop序列化、概述、自定义bean对象实现序列化接口(Writable)、序列化案例实操、编写流量统计的Bean对象、编写Mapper类、编写Reducer类、编写Driver驱动类
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
220 6
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
100 2
|
1月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
69 4
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
159 2
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
143 1
|
3月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
106 1
|
3月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
107 5
|
3月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
45 4
|
3月前
|
大数据 网络安全 数据安全/隐私保护
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(二)
大数据-03-Hadoop集群 免密登录 超详细 3节点云 分发脚本 踩坑笔记 SSH免密 集群搭建(二)
184 5