Text to image论文精读 AttnGAN: Fine-Grained TexttoImage Generation with Attention(带有注意的生成对抗网络细化文本到图像生成)

简介: 这篇文章提出了一种注意力生成对抗网络(AttnGAN),它允许注意力驱动、多阶段细化细粒度文本到图像的生成,此外,还提出了一种深度注意多模态相似性模型来计算细粒度图像-文本匹配损失以训练生成器,进而生成更逼真的图像。文章被2018年CVPR(IEEE Conference on Computer Vision and Pattern Recognition)会议收录。论文地址: https://arxiv.org/pdf/1711.10485.pdf代码地址: https://github.com/taoxugit/AttnGAN本博客是精读这篇论文的报告,包含一些个人理解、知识拓展和

@[TOC](AttnGAN: Fine-Grained TexttoImage Generation with Attention(带有注意的生成对抗网络细化文本到图像生成))

这篇文章提出了一种注意力生成对抗网络(AttnGAN),它允许注意力驱动、多阶段细化细粒度文本到图像的生成,此外,还提出了一种深度注意多模态相似性模型来计算细粒度图像-文本匹配损失以训练生成器,进而生成更逼真的图像。

文章被2018年CVPR(IEEE Conference on Computer Vision and Pattern Recognition)会议收录。

论文地址: https://arxiv.org/pdf/1711.10485.pdf

代码地址: https://github.com/taoxugit/AttnGAN

本博客是精读这篇论文的报告,包含一些个人理解、知识拓展和总结。

一、摘要

在本文中,我们提出了一种注意力生成对抗网络(AttnGAN),它允许注意力驱动、多阶段细化细粒度文本到图像的生成。通过一种新的注意生成网络,AttnGAN可以通过关注自然语言描述中的相关词语,合成图像不同子区域的细粒度细节。此外,本文还提出了一种深度注意多模态相似性模型来计算细粒度图像-文本匹配损失以训练生成器。AttnGAN显著优于之前的最新水平,在CUB数据集上,最佳报告初始得分提高了14.14%,在更具挑战性的COCO数据集上,提高了170.25%。通过可视化AttnGAN的注意层,也可以进行详细的分析。这是第一次表明分层注意GAN能够自动选择单词级的条件来生成图像的不同部分。

二、关键词

Deep Learning, Generative Adversarial Nets, Image Synthesis, Computer Vision

三、为什么提出AttnGAN?

传统文本生成图像方法是将整个文本描述编码为全局句子向量,作为基于GAN的图像生成的条件,这种方法在全局句子向量上调节GAN,缺乏单词级的重要细粒度信息。

四、主要原理

主要原理跟StackGAN++差不多,也是多阶段图像生成,但是在其中引入注意力机制。AttnGAN主要是以GAN、CNN、Decnn、LSTM、Attention等机制模块组成的一个复杂网络,模型最简单的模型就是LSTM+CNN,做的事情就是:

  1. 将文本embedding得到word features和sentence features(利用到了LSTM);
  2. 利用sentence features生成一个低分辨率的图像(这一步与stackGAN差不多);
  3. 在低分辨率的图像上进一步加入word features和sentence features来生成更高分辨率的图像。

网络由三大模块组成:LSTM网络,生成器网络、判别器网络。

4.1、两大核心组成

AttnGAN创新主要在于两大组成部分:注意力生成网络和DAMSM

注意力生成网络:生成网络中的引入的注意机制使AttnGAN能够在单词的水平上实现单词与图片中的某个子区域的映射,自动选择字级条件以生成图像的不同子区域

DAMSM:能够计算细粒度文本图像匹配损失,其仅应用于最后一个生成器的输出,有利于生成更高质量的图片。

4.2 、损失函数

最终设计模型的损失函数为:

L=LG+λLDAMSM, where LG=i=0m1LGi

其中,λ是平衡因子,G的损失函数LG为:

LGi=unconditional loss 21Ex^ipGi[log(Di(x^i)]conditional loss 21Ex^ipGi[log(Di(x^i,eˉ)],

D的损失函数LD为:

LDi=unconditional loss 21Exipdata i[logDi(xi)]21Ex^ipGi[log(1Di(x^i)]+conditional loss 21Exipdata i[logDi(xi,eˉ)]21Ex^ipGi[log(1Di(x^i,eˉ)]

可以看出,总损失的第一项LG,原理与StackGAN中的无条件+有条件结构相似,无条件损失确定图像是真实的还是假的,条件损失确定图像和句子是否相符。

没看StackGAN++可以点击->:Text to image论文精读 StackGAN++

而损失函数的第二项LDAMSM是由DAMSM计算的字符级细粒度图像-文本匹配损失,这部分在本博文的第七节中介绍。

五、框架分析

在这里插入图片描述

整个模型分三大块:

  1. 最左边文本编码器(LSTM)+最右边的图像编码器组合
    文本编码器利用注意力机制对文本进行编码,输出sentence feature和word feature,其中sentence feature:取LSTM最后一个状态的输出,作用是当作生成器的控制信息;word feature:取中间隐藏状态的输出,用来确定图片与句子的一致性。图像编码器采用卷积神经网络(CNN)将图像映射到语义向量。
  2. 中间橘色框注意力生成网络,生成器接收的是sentence feature,生成具有句子特征的图片,从第二个生成器开始加入注意力机制,注意力机制接收的是生成器输出的h0矩阵以及word feature矩阵,输出是一个矩阵作为下一个生成器的输入。每个生成器由上采样、残差网络、全连接、卷积组成。
  3. 下方的判别器,输入是sentence feature和该阶段生成器生成的图片,判断图片与句子的相符性。

六、生成网络中的注意力机制

6.1、生成网络注意力框架

在这里插入图片描述

F^attn^、F^ca^、Fi、Gi都是神经网络模型

F_i^attn^是第i阶段的注意力模型,F^ca^是条件增强模块,Conditioning

Augmentation其将句子向量e^-^转换为条件向量) ,z是随机噪声,e是句子向量的矩阵,e^-^表示全局句子向量

6.2、实现细节

2.1、第一步

在这里插入图片描述

编码后的F^ca^ 通过F0, h0=F0 (z,F^ca^(e^-^ )) ,F0通过一个FC层和若干上采样层将输入的向量转换成指定维数。

hi=Fi(hi1,Fiattn(e,hi1)) for i=1,2,,m1Fattn(e,h)=(c0,c1,,cN1)RD^×N

其中,Fi^attn^的输入有两个,维数为D×T的单词特征e和维数为D^-^×N的上一隐藏层中的图像特征h,h的每一列是图像每个子区域的特征向量。Fi^attn^输出为c,c_i表示为第i个子区域的单词上下文向量。

6.2、第二步

对输入图片的每一部分,匹配最相关的单词向量来约束其生成,增加图像的细粒度细节。匹配图像子区域和最相关的单词公式如下:

cj=i=0T1βj,iei, where βj,i=k=0T1exp(sj,k)exp(sj,i)

其中sj,i=hjTei

而β(i,j)表示    第i个单词对生成图像的第j个区域的重要程度。

6.3、第三步

通过将图像特征和相应的单词上下文特征结合起来生成图像,将生成的图像和sentence feature输入到D中训练。

在这里插入图片描述

七、DAMSM (Deep Attentional Multimodal Similarity Model)

7.1、DAMSM框架

在这里插入图片描述

DAMSM主要有两个神经网络,文本编码器和图像编码器。其将句子的图像和单词的子区域映射到一个公共语义空间,从而在单词级别测量图像-文本相似度,以计算图像生成的细粒度损失。

文本编码器:采用双向长短期记忆网络(LSTM)

图像编码器:采用卷积神经网络(CNN),将图像映射到语义向量

7.2、实现细节

7.2、第一步

根据图像和文本之间的注意模型来衡量图像-句子对的匹配程度,首先计算相似矩阵:

s=eTv

其中,s∈R^(T*289)^。s_ij描述的是文本中第i个单词和图片的第j个区域的点积相似性。v是图像的特征向量,e是单词的特征向量。

将其归一化:

sˉi,j=k=0T1exp(sk,j)exp(si,j)

7.2、第二步

建立一个注意模型来计算每个单词的区域上下文向量:

ci=j=0288αjvj, where αj=k=0288exp(γ1sˉi,k)exp(γ1sˉi,j)

其中ci是与句子第i个单词相关的图像子区域向量表示,其中γ1是一个因素,表示对图像相关子区域特征的关注度。

7.3、第三步

应用余弦相似度定义计算第i个单词与图片的相关性:

R(ci,ei)=(ciTei)/(ciei)

进而得出整个图像与整个文本描述之间的注意力机制图像-文本匹配:

R(Q,D)=log(i=1T1exp(γ2R(ci,ei)))γ21

7.4、损失函数

对于一个批度文本图片对{[Qi,Di]}Mi=1,有一个后验概率:

P(DiQi)=j=1Mexp(γ3R(Qi,Dj))exp(γ3R(Qi,Di))

   将后验概率引入图像与其相应文本描述匹配的负对数损失函数:

L1w=i=1MlogP(DiQi),L2w=i=1MlogP(QiDi)

   以相同方法得到L1s,L2s

   最终可以得出DAMSM的损失函数为:

LDAMSM=L1w+L2w+L1s+L2s

八、实验

实验数据集:CUB、COCO

定量标准:IS、R-precision

实验效果:

在这里插入图片描述

在这里插入图片描述在这里插入图片描述

九、实验复现

AttnGAN代码复现(详细步骤+避坑指南)

十、相关阅读

下一篇:论文精读 DM-GAN: Dynamic Memory Generative Adversarial Networks for t2i 用于文本图像合成的动态记忆生成对抗网络

2016~2021 文字生成图像 Text to image(T2I)论文整理 阅读路线和阅读指南

文字转图像专栏

相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
3月前
|
机器学习/深度学习 计算机视觉 知识图谱
【YOLOv8改进】MobileViT 更换主干网络: 轻量级、通用且适合移动设备的视觉变压器 (论文笔记+引入代码)
MobileViT是针对移动设备的轻量级视觉Transformer网络,结合CNN的局部特征、Transformer的全局注意力和ViT的表示学习。在ImageNet-1k上,它以600万参数实现78.4%的top-1准确率,超越MobileNetv3和DeiT。MobileViT不仅适用于图像分类,还在目标检测等任务中表现出色,且优化简单,代码已开源。YOLOv8引入了MobileViT块,整合卷积和Transformer结构,提升模型性能。更多详情可参考相关专栏和链接。
|
11天前
|
数据采集 搜索推荐 算法
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
本文通过Python爬虫技术采集B站视频评论数据,利用LDA主题分析、聚类分析和语义网络分析等方法,对评论进行深入的文本分析,挖掘用户评论的主题、情感倾向和语义结构,旨在为商业决策提供支持,优化内容创作和用户满意度。
基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析
|
1天前
|
机器学习/深度学习 人工智能 编解码
【神经网络】基于对抗神经网络的图像生成是如何实现的?
对抗神经网络,尤其是生成对抗网络(GAN),在图像生成领域扮演着重要角色。它们通过一个有趣的概念——对抗训练——来实现图像的生成。以下将深入探讨GAN是如何实现基于对抗神经网络的图像生成的
7 3
|
16天前
|
机器学习/深度学习 算法 网络架构
神经网络架构殊途同归?ICML 2024论文:模型不同,但学习内容相同
【8月更文挑战第3天】《神经语言模型的缩放定律》由OpenAI研究人员完成并在ICML 2024发表。研究揭示了模型性能与大小、数据集及计算资源间的幂律关系,表明增大任一资源均可预测地提升性能。此外,论文指出模型宽度与深度对性能影响较小,较大模型在更多数据上训练能更好泛化,且能高效利用计算资源。研究提供了训练策略建议,对于神经语言模型优化意义重大,但也存在局限性,需进一步探索。论文链接:[https://arxiv.org/abs/2001.08361]。
17 1
|
5天前
|
机器学习/深度学习 编解码 Android开发
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
MATLAB Mobile - 使用预训练网络对手机拍摄的图像进行分类
16 0
|
12天前
|
人工智能 算法 安全
【2023 年第十三届 MathorCup 高校数学建模挑战赛】C 题 电商物流网络包裹应急调运与结构优化问题 赛后总结之31页论文及代码
本文总结了2023年第十三届MathorCup高校数学建模挑战赛C题的解题过程,详细阐述了电商物流网络在面临突发事件时的包裹应急调运与结构优化问题,提出了基于时间序列预测、多目标优化、遗传算法和重要性评价模型的综合解决方案,并提供了相应的31页论文和代码实现。
22 0
|
2月前
|
Web App开发 自然语言处理 算法
一文搞懂:【论文笔记】BINE:二分网络嵌入
一文搞懂:【论文笔记】BINE:二分网络嵌入
21 0
|
2月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
|
3天前
|
SQL 安全 网络安全
网络安全与信息安全:保护数字世界的基石
【8月更文挑战第16天】在数字化时代,网络安全与信息安全的重要性日益凸显。本文将深入探讨网络安全漏洞、加密技术以及安全意识等关键领域,旨在为读者提供全面的知识分享和实践指导。我们将从网络攻击的常见类型及其防御措施出发,进一步讨论加密技术在保障数据安全中的作用,并强调提升个人和企业的安全意识的必要性。通过分析真实案例,本文旨在帮助读者构建更加坚固的网络安全防线,共同守护我们的数字生活。