《从Excel到Python——数据分析进阶指南》一第1章 生成数据表

简介:

本节书摘来自异步社区《从Excel到Python——数据分析进阶指南》一书中的第1章,第1.1节,作者 王彦平(蓝鲸),更多章节内容可以访问云栖社区“异步社区”公众号查看

第1章 生成数据表
从Excel到Python——数据分析进阶指南
常见的生成数据表的方法有两种,第一种是导入外部数据,第二种是直接写入数据。 Excel中的“文件”菜单中提供了获取外部数据的功能,支持数据库和文本文件和页面的多种数据源导入。


1c753ecc4b42b5cc9e711047330f236810f37543

Python支持从多种类型的数据导入。在开始使用Python进行数据导入前需要先导入pandas库,为了方便起见,我们也同时导入numpy库。

import numpy as np
import pandas as pd
  1. 导入数据表
    下面分别是从Excel和csv格式文件中导入数据并创建数据表的方法。代码是最简模式,里面有很多可选参数设置,例如列名称、索引列、数据格式等。感兴趣的朋友可以参考pandas的官方文档。
df=pd.DataFrame(pd.read_csv('name.csv',header=1))
df=pd.DataFrame(pd.read_excel('name.xlsx'))
  1. 创建数据表
    另一种方法是通过直接写入数据来生成数据表,Excel中直接在单元格中输入数据就可以,Python中通过下面的代码来实现。生成数据表的函数是pandas库中的DateFrame函数,数据表一共有6行数据,每行有6个字段。在数据中我们特意设置了一些NA值和有问题的字段,例如包含空格等。后面将在数据清洗步骤进行处理。后面我们将统一以DataFrame的简称df来命名数据表。
df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006], 
                   "date":pd.date_range('20130102', periods=6),
                   "city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
                   "age":[23,44,54,32,34,32],
                   "category":['100-A','100-B','110-A','110-C','210-A','130-F'],
                   "price":[1200,np.nan,2133,5433,np.nan,4432]},
                   columns =['id','date','city','category','age','price'])

这是刚刚创建的数据表,我们没有设置索引列,price字段中包含有NA值,city字段中还包含了一些脏数据。


4a23c76a57530beb1d2fb2fdc7bba12d7c144532
相关文章
|
18天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
20天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
24天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
72 4
数据分析的 10 个最佳 Python 库
|
27天前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
25天前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
29天前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
15天前
|
机器学习/深度学习 前端开发 数据处理
利用Python将Excel快速转换成HTML
本文介绍如何使用Python将Excel文件快速转换成HTML格式,以便在网页上展示或进行进一步的数据处理。通过pandas库,你可以轻松读取Excel文件并将其转换为HTML表格,最后保存为HTML文件。文中提供了详细的代码示例和注意事项,帮助你顺利完成这一任务。
27 0
|
29天前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
16天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
下一篇
DataWorks