暂时未有相关云产品技术能力~
公众号 Deephub-IMBA
DeepSeek-V2是一个强大的开源混合专家(MoE)语言模型,通过创新的Transformer架构实现了经济高效的训练和推理。该模型总共拥有2360亿参数,其中每个令牌激活21亿参数,支持最大128K令牌的上下文长度。
VQ-VAE 是变分自编码器(VAE)的一种改进。这些模型可以用来学习有效的表示。本文将深入研究 VQ-VAE 之前,不过,在这之前我们先讨论一些概率基础和 VAE 架构。
本文探讨了如何使用高斯过程扩展到多任务场景,强调了多任务高斯过程(MTGP)在处理相关输出时的优势。通过独立多任务GP、内在模型(ICM)和线性模型(LMC)的核心区域化方法,MTGP能够捕捉任务间的依赖关系,提高泛化能力。ICM和LMC通过引入核心区域化矩阵来学习任务间的共享结构。在PyTorch中,使用GPyTorch库展示了如何实现ICM模型,包括噪声建模和训练过程。实验比较了MTGP与独立GP,显示了MTGP在预测性能上的提升。
在本文中,我们将构建基础的无条件扩散模型,即去噪扩散概率模型(DDPM)。从探究算法的直观工作原理开始,然后在PyTorch中从头构建它。本文主要关注算法背后的思想和具体实现细节。
在本文中,我们将介绍模型架构、训练,并进行实际预测案例研究。将对TimesFM的预测能力进行分析,并将该模型与统计和机器学习模型进行对比。
PyTorch的TorchDynamo是一个即时编译器,用于优化动态图执行,提高运行效率。它在运行时分析和转换代码,应用优化技术,如操作符融合,然后编译成高效机器码。通过一个包含特征工程、超参数调整、交叉验证的合成数据集示例,展示了TorchDynamo如何减少训练时间并提高模型性能。它易于集成,只需对现有PyTorch代码进行小改动,即可利用其性能提升。TorchDynamo的优化包括动态捕获计算图、应用优化和编译,适用于实时应用和需要快速响应的场景。
**注意力机制中的掩码在深度学习中至关重要,如Transformer模型所用。掩码类型包括:填充掩码(忽略填充数据)、序列掩码(控制信息流)和前瞻掩码(自回归模型防止窥视未来信息)。通过创建不同掩码,如上三角矩阵,模型能正确处理变长序列并保持序列依赖性。在注意力计算中,掩码修改得分,确保模型学习的有效性。这些技术在现代NLP和序列任务中是核心组件。**
在NLP中,位置编码如RoPE、CoPE等增强模型对序列顺序的理解。RoPE通过旋转矩阵编码位置,适应不同距离的相对位置。线性旋转、NTK和YaRN是RoPE的变体,优化长序列处理。CoPE是动态的,根据序列内容调整位置编码,改善长距离依赖的捕捉。这些技术提升了模型在处理复杂语言任务时的性能。
在这篇文章中,我们将探讨测试和评估异常检测器的问题(这是一个众所周知的难题),并提出了一种解决方案被称为“Doping”方法。使用Doping方法,真实数据行会被(通常是)随机修改,修改的方式是确保它们在某些方面可能成为异常值,这时应该被异常检测器检测到。然后通过评估检测器检测Doping记录的效果来评估这些检测器。
在本文中,我们将探讨一种方法来解决这个问题,称为Elastic Weight Consolidation。EWC提供了一种很有前途的方法来减轻灾难性遗忘,使神经网络在获得新技能的同时保留先前学习任务的知识。
这篇论文的作者提出了一个简单的幻觉检测模型,其输入特征由上下文的注意力权重与新生成的令牌(每个注意头)的比例给出。
构建数据可视化代理解决了LLM(大型语言模型)在理解和生成定制图表时的局限性。代理提供DataFrame信息和自定义样式工具,简化与LLM的交互。选择了Plotly而非Matplotlib,因其交互性和Web渲染能力更适合现代可视化。代理通过元数据索引了解数据集详情,并根据样式指示生成符合特定审美的图表。通过ReActAgent和Groq模型,代理能理解用户指令,生成准确的Plotly代码,从而创建定制图表,提高了数据可视化的效率和准确性。
本文探讨了时间序列分析的核心概念,包括自协方差、自相关和平稳性。通过Python实现和图形化展示了这些概念,以增进理解。时间序列涉及观察随时间变化的数据,如心率或温度。自协方差和自相关衡量数据点之间的关系,滞后表示时间间隔。弱平稳性意味着均值、方差和协方差不随时间变化。文章介绍了自回归(AR)、移动平均(MA)、ARMA和ARIMA模型,用于描述不同类型的序列行为。统计检验如ADF和Durbin-Watson用于检测平稳性和残差自相关。ARIMA模型特别适用于非平稳数据,通过差分实现平稳化。文章还提供了代码示例和可视化来辅助学习。
Python中关于列表的一些很酷的技巧
有很多个框架和包可以优化LLM推理和服务,所以在本文中我将整理一些常用的推理引擎并进行比较。
这篇文章我们将介绍如何利用torch.multiprocessing模块,在PyTorch中实现高效的多进程处理。
本文总结了2024年6月后两周发表的一些最重要的大语言模型论文。这些论文涵盖了塑造下一代语言模型的各种主题,从模型优化和缩放到推理、基准测试和增强性能。
新框架提出智能路由选择在强弱语言模型间,利用用户偏好的学习来预测强模型胜率,基于成本阈值做决策。在大规模LLMs部署中,该方法显著降低成本而不牺牲响应质量。研究显示,经过矩阵分解和BERT等技术训练的路由器在多个基准上提升性能,降低强模型调用,提高APGR。通过数据增强,如MMLU和GPT-4评审数据,路由器在GSM8K、MMLU等测试中展现出色的性能提升和成本效率。未来将测试更多模型组合以验证迁移学习能力。该框架为LLMs部署提供了成本-性能优化的解决方案。
在自然语言处理领域,人们经常需要比较字符串,这些字符串可能是单词、句子、段落甚至是整个文档。如何快速判断两个单词或句子是否相似,或者相似度是好还是差。这类似于我们使用手机打错一个词,但手机会建议正确的词来修正它,那么这种如何判断字符串相似度呢?本文将详细介绍这个问题。
本文提供了一个用于解决 Kaggle 时间序列预测任务的 encoder-decoder 模型,并介绍了获得前 10% 结果所涉及的步骤。
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
DeepMind的LOFT基准测试挑战了长上下文大型语言模型(LCLLMs)的效用,包括Gemini、GPT-4o和Claude 3 Opus。
这篇文章探讨了高斯过程作为解决小数据问题的工具,介绍了多元高斯分布的基础和其边缘及条件分布的性质。文章通过线性回归与维度诅咒的问题引出高斯过程,展示如何使用高斯过程克服参数爆炸的问题。作者通过数学公式和可视化解释了高斯过程的理论,并使用Python的GPy库展示了在一维和多维数据上的高斯过程回归应用。高斯过程在数据稀疏时提供了一种有效的方法,但计算成本限制了其在大数据集上的应用。
Transformer模型的革新性在于其自注意力机制,广泛应用于多种任务,包括非原始设计领域。近期研究专注于Transformer的推理能力,特别是在图神经网络(GNN)上下文中。
在本文中,我们将介绍使用私有数据优化检索增强生成(RAG)的四种策略,可以提升生成任务的质量和准确性。通过使用一些优化策略,可以有效提升检索增强生成系统的性能和输出质量,使其在实际应用中能够更好地满足需求。
Theta方法整合了两个基本概念:分解时间序列和利用基本预测技术来估计未来的价值。
这里有15款免费工具推荐:NetworkX(Python基础),Graph-tool(C++速度),Graphviz(可视化库),ipycytoscape(Jupyter集成),ipydagred3,ipySigma(NetworkX + Web),Netwulf(交互式),nxviz(Matplotlib绑定),Py3plex(复杂网络分析),Py4cytoscape(Python+Cytoscape),pydot(Graphviz接口),PyGraphistry(GPU加速),python-igraph,pyvis(交互式图形),SNAP(大规模网络分析)。绘制和理解网络图从未如此简单!
大语言模型(LLMs)在近年来取得了快速发展。本文总结了2024年6月上半月发布的一些最重要的LLM论文,可以让你及时了解最新进展。
在机器学习和数据科学的世界里,数据的质量是建模成功与否的关键所在。这就是特征工程和数据预处理发挥作用的地方。本文总结的这些关键步骤可以显著提高模型的性能,获得更准确的预测,我们将深入研究处理异常值、缺失值、编码、特征缩放和特征提取的各种技术。
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
粒子滤波是一种贝叶斯滤波方法,主要用于非线性、非高斯动态系统中的状态估计。它通过使用一组随机样本(称为粒子)来表示状态的后验概率分布,并通过这些粒子的加权平均来估计状态。
HUSKY是开源语言代理,专注复杂任务处理,如数字、表格及知识推理。通过多步计划和专家模型执行,它能迭代解决问题。在多模态任务中,即使使用小型模型,HUSKY也能匹敌GPT-4。训练涉及教师模型创建解决方案轨迹,以泛化处理广泛任务。在数值、表格和知识推理任务上表现出色,通过整合高效模型,HUSKY展示了在复杂推理领域的潜力。
深度强化学习可以将深度学习与强化学习相结合:深度学习擅长从原始数据中学习复杂的表示,强化学习则使代理能够通过反复试验在给定环境中学习最佳动作。通过DRL,研究人员和投资者可以开发能够分析历史数据的模型,理解复杂的市场动态,并对股票购买、销售或持有做出明智的决策。
LLMs(大型语言模型)能够记忆并重复它们的训练数据,这可能会带来隐私和版权风险。为了减轻记忆现象,论文作者引入了一种名为"goldfish loss"的微妙修改,在训练过程中,随机抽样的一部分标记被排除在损失计算之外。这些被舍弃的标记不会被模型记忆,从而防止模型完整复制训练集中的一整个标记序列。
现有的RAG解决方案可能因为最相关的文档的嵌入可能在嵌入空间中相距很远,这样会导致检索过程变得复杂并且无效。为了解决这个问题,论文引入了多头RAG (MRAG),这是一种利用Transformer的多头注意层的激活而不是解码器层作为获取多方面文档的新方案。
机器学习运维(MLOps)是一组用于自动化和简化机器学习(ML)工作流程和部署的实践。所选择的部署策略可以显著影响系统的性能和效用。所以需要根据用例和需求,采用不同的部署策略。在这篇文章中,我们将探讨三种常见的模型部署策略:批处理、实时和边缘计算。
**Pixel Transformer** 挑战了ViT的16×16像素块范式,将每个像素作为独立令牌,消除局部偏置。在多种任务中,包括图像分类和生成,性能显著提升,尤其是在CIFAR-100和ImageNet上。通过单像素处理,模型能捕获更精细细节,增强泛化能力。尽管计算复杂性增加,但研究表明这种方法有潜力推动视觉模型和跨模态学习的发展。[[https://avoid.overfit.cn/post/558881d4b25b4e9e944806441eaf887a]]
这是2024年4月《SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion》中提出的新模型,采用集中策略来学习不同序列之间的交互,从而在多变量预测任务中获得最先进的性能。
本文探讨了一种名为“abliteration”的技术,该技术能够在不重新训练大型语言模型(LLM)的情况下移除其内置的安全审查机制。通常,LLM在接收到潜在有害输入时会拒绝执行,但这一安全特性牺牲了模型的灵活性。通过对模型残差流的分析,研究人员发现可以识别并消除导致拒绝行为的特定方向,从而允许模型响应所有类型的提示。
在当今数据驱动的决策过程中,因果推断和增益模型扮演了至关重要的角色。因果推断帮助我们理解不同变量间的因果关系,而增益模型则专注于评估干预措施对个体的影响,从而优化策略和行动。然而,要提高这些模型的精确度和适应性,引入元学习器成为了一个创新的解决方案。元学习器通过将估计任务分解并应用不同的机器学习技术,能够有效增强模型的表现。接下来,我们将详细探讨如何利用元学习优化增益模型的性能,特别是通过S-Learner、T-Learner和X-Learner这几种估计器。
加速机器学习模型训练是工程师的关键需求。PyTorch Profiler提供了一种分析工具,用于测量CPU和CUDA时间,以及内存使用情况。通过在训练代码中嵌入分析器并使用tensorboard查看结果,工程师可以识别性能瓶颈。Profiler的`record_function`功能允许为特定操作命名,便于跟踪。优化策略包括使用FlashAttention或FSDP减少内存使用,以及通过torch.compile提升速度。监控CUDA内核执行和内存分配,尤其是避免频繁的cudaMalloc,能有效提升GPU效率。内存历史记录分析有助于检测内存泄漏和优化批处理大小。
IBM研究人员提出Tiny Time Mixers (TTM),这是一个轻量级、基于mlp的TS模型,参数量小于1M,在M4数据集上表现优于大型SOTA模型,且具备优秀的零样本预测能力。TTM无注意力机制,利用TSMixer进行多级建模,自适应补丁和频率前缀调整等创新特性提升性能。预训练和微调阶段各有独特设计,预训练仅用单变量序列,微调时学习多变量依赖。TTM在某些任务中证明了小模型的优越性,且模型已开源。
该文探讨了缺失值插补的不同方法,比较了它们恢复数据真实分布的效果。文章指出,处理插补尤其在小样本或复杂数据时是个挑战,需要选择能适应数据分布变化的方法。文中介绍了完全随机缺失(MCAR)、随机缺失(MAR)和非随机缺失(MNAR)三种机制,并以一个简单的例子展示了数据分布变化。文章通过比较均值插补、回归插补和高斯插补,强调了高斯插补在重现数据分布方面更优。评估插补方法时,不应仅依赖于RMSE,而应关注分布预测,使用如能量距离这样的指标。此外,即使在随机缺失情况下,数据分布也可能因模式变化而变化,需要考虑适应这些变化的插补方法。
这篇文章除了介绍线性模型在减肥app预测中的不切实际性,还探讨了不同统计分布在体重管理和数据分析中的应用。文章提到了正态分布和泊松分布,前者常用于描述围绕平均值对称分布的连续数据,如体重;后者适合计数数据,如体重变化次数。正态分布以其钟形曲线闻名,泊松分布则描述独立事件的数量。文章还简要介绍了卡方分布在检验分类变量关系时的作用。最后,文章指出了在线性回归中假设数据正态分布的原因,包括便于统计推断和最小化估计误差。
Block Transformer是一种优化自回归语言模型推理效率的新架构,通过块级自注意力来平衡全局和局部依赖,提高吞吐量。模型包含嵌入器、块解码器和令牌解码器,其中块解码器处理全局依赖,令牌解码器处理局部细节。这种方法减轻了KV缓存的延迟和内存开销,尤其是在长序列处理中。实验显示,尽管Block Transformer参数量增加,但推理速度显著提升,尤其是在大块长度和优化的组件比例下,实现了性能与速度的平衡。
在3D医学图像分割领域,尽管出现了多种新架构和方法,但大多未能超越2018年nnU-Net基准。研究发现,许多新方法的优越性未经严格验证,揭示了验证方法的不严谨性。作者通过系统基准测试评估了CNN、Transformer和Mamba等方法,强调了配置和硬件资源的重要性,并更新了nnU-Net基线以适应不同条件。论文呼吁加强科学验证,以确保真实性能提升。通过nnU-Net的变体和新方法的比较,显示经典CNN方法在某些情况下仍优于理论上的先进方法。研究提供了新的标准化基线模型,以促进更严谨的性能评估。
该文探讨了AI代理的发展,特别是ChatGPT等模型如何展示了AI系统的潜力。文章提出从提示工程转向代理工程,定义了代理能力需求,并提出一个框架来设计和实施AI代理。代理工程涉及明确代理的任务、所需行动、能力及熟练度,通过现有技术满足这些需求。文章强调了广泛和特定知识的熟练度、精确信息获取以及代理的结构设计和协调。随着技术进步,该框架为AI代理的未来发展提供了基础。
一般情况下我们对联邦学习的理解都是大模型和深度学习模型才可以进行联邦学习,其实基本上只要包含参数的机器学习方法都可以使用联邦学习的方法保证数据隐私
企业在尝试使用检索增强生成(RAG)时遇到困难,因为系统效果不佳且难以优化。问题主要源于语义不协调,即任务理解与底层知识间的不一致。由于向量嵌入技术的不透明性,诊断和解决这个问题变得复杂。本文旨在揭示RAG失败的原因并提供改进策略。文章探讨了RAG的工作原理,强调了语义不协调的影响,并介绍了如何通过增加结构化数据和使用语义+相关性排名来提升RAG性能。此外,建议将AI视为工具而非完整解决方案,并提醒读者当前技术仍处早期阶段,需注意挑战。
本文总结了2024年5月第四周发表的一些最重要的LLM论文。这些论文的主题包括模型优化和缩放到推理、基准测试和增强性能。