GraphRAG 与 RAG 的比较分析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。

检索增强生成(RAG)技术概述

检索增强生成(Retrieval-Augmented Generation,简称 RAG)是一种旨在提升大型语言模型(Large Language Models,LLMs)性能的技术方法。其核心思想是通过整合外部可靠知识库的信息来增强模型的输出质量。

RAG 的工作原理可以概括如下:当 LLM 接收到查询时,它不仅依赖于自身的预训练知识,还会主动从指定的知识源检索相关信息。这种方法确保了生成的输出能够参考大量上下文丰富的数据,并得到最新、最相关可用信息的支持。

RAG 系统的核心组件

标准 RAG 系统主要由三个关键组件构成:

  1. 检索器组件(Retriever Component):- 功能:在知识库或大规模文档集中搜索与查询主题高度相关的信息。- 工作方式:识别在语义上与查询相关的文档,并通过相似度度量(通常采用向量间的余弦相似度)计算相关性。
  2. 生成器(Generator):- 定义:通常是一个大型语言模型。- 输入:检索到的相关信息和原始查询。- 输出:基于输入生成响应。
  3. 知识库(Knowledge Base):- 用途:作为检索器查找文档或信息的数据源。

RAG 的工作流程

  1. 从外部源收集相关信息。
  2. 将收集到的信息附加到用户的原始提示中。
  3. 将增强后的提示作为输入发送给语言模型。
  4. 在生成阶段,LLM 结合增强提示和自身的训练数据表示,生成针对用户查询定制的响应。

这一过程产生的响应融合了个性化和可验证的信息,特别适用于聊天机器人等应用场景。

图2:检索增强生成流程示意

构建 RAG 系统的关键步骤

  1. 知识库准备:- 对文档进行索引- 创建文本嵌入
  2. 检索器模型:- 训练或微调,以有效搜索知识库
  3. 生成器模型:- 通常采用预训练的语言模型
  4. 系统集成:- 确保各组件无缝协作

Graph RAG 技术简介

Graph RAG 是 RAG 方法的一个高级变体,其特点是引入了图结构数据。与将知识库视为平面文档集合不同,Graph RAG 将信息表示为实体和关系的互联网络。

Graph RAG 的核心概念

Graph RAG 基于知识图谱(Knowledge Graphs,KGs)构建。知识图谱是现实世界实体及其关系的结构化表示,主要由两个基本元素组成:

  • 节点(Nodes): 表示单个实体,如人物、地点、物体或概念。
  • 边(Edges): 表示节点之间的关系,定义了实体间的连接方式。

相比于标准 RAG 使用向量相似度和向量数据库进行检索,Graph RAG 利用知识库进行更全面、系统的信息检索,从而提高了检索的完整性和准确性。

Graph RAG 的技术优势

Graph RAG 相较于标准 RAG 具有以下显著优势:

  1. 关系上下文捕捉:能够捕捉和利用信息片段之间的复杂关系,提供更丰富、更具语境的信息检索结果。
  2. 多跳推理能力:图结构支持系统沿关系链进行推理,实现更复杂、更深入的逻辑分析。
  3. 结构化知识表示:相比平面文档结构,图结构能更自然地表示层级和非层级关系,更贴近现实世界的知识组织方式。
  4. 查询效率提升:对于涉及关系遍历的查询类型,图结构可显著提高处理效率。

图3:知识图谱示例

Graph RAG 的工作原理

Graph RAG 的工作流程可以概括为以下几个关键步骤:

  1. 查询处理:对输入查询进行分析和转换,使其适合图结构的查询格式。
  2. 图遍历:系统在图结构中进行探索,沿相关关系路径寻找连接的信息节点。
  3. 子图检索:不同于检索独立的信息片段,系统提取包含相互关联上下文的相关子图。
  4. 信息整合:将检索到的子图进行组合和处理,形成一个连贯、全面的上下文信息集。
  5. 响应生成:语言模型基于原始查询和整合后的图信息生成最终响应。

Graph RAG 处理流程图

图4:Graph RAG 处理流程示意图

标准 RAG 与 Graph RAG 的关键区别

  1. 知识表示方式:- 标准 RAG:采用平面文档结构- Graph RAG:使用图结构表示知识
  2. 检索机制:- 标准 RAG:主要依赖向量相似度搜索- Graph RAG:采用图遍历算法进行信息检索
  3. 上下文理解能力:- Graph RAG 能够捕捉更复杂的多步骤关系,这些关系在标准 RAG 中可能被忽略
  4. 推理能力:- Graph RAG 的图结构支持对相互关联信息进行更深入、更复杂的推理

图5:RAG 与 Graph RAG 对比示意

总结

Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。这种方法在处理需要深度上下文理解和复杂关系分析的任务中,展现出了明显的优势。

随着知识图谱技术和图数据库的不断发展,Graph RAG 有望在各种高级人工智能应用中发挥越来越重要的作用,特别是在需要精确、全面信息检索和复杂推理的领域。

作者:Praveen Raj

目录
相关文章
|
6月前
|
存储 自然语言处理 算法
【学习大模型】RAG基础
RAG(Retrieval-Augmented Generation)技术是为了解决大模型中的幻觉问题、实时交互、数据安全和知识动态性挑战。它结合了搜索和大模型的提示功能,使模型能基于检索到的信息生成更准确的回答。RAG通过向量数据库和向量检索,将文本转化为向量表示,然后进行相似度计算和检索,以提供上下文相关的信息。
631 1
|
机器学习/深度学习 存储 NoSQL
Graph RAG: 知识图谱结合 LLM 的检索增强
RAG(Retrieval Argumented Generation)这种基于特定任务/问题的文档检索范式中,我们通常先收集必要的上下文,然后利用具有认知能力的机器学习模型进行上下文学习(in-context learning),来合成任务的答案。这次,我们借助 LLM 的力量,强化下 RAG。
2068 0
Graph RAG: 知识图谱结合 LLM 的检索增强
|
3月前
|
存储 SQL 自然语言处理
LLM RAG系列
LLM RAG系列
90 1
|
4月前
|
JSON 文字识别 算法
使用InternVL、LMDeploy和GTE搭建多模态RAG系统
如何将视觉大模型(VLM)与 多模态RAG 结合起来,创建服装搜索和搭配推荐!本文展示了InternVL模型在分析服装图像和提取颜色、款式和类型等关键特征方面的强大功能。
|
9天前
|
数据采集 自然语言处理 算法
实战RAG:构建基于检索增强的问答系统
【10月更文挑战第21天】在当今大数据时代,如何高效地从海量信息中获取所需知识,成为一个亟待解决的问题。检索增强的生成模型(Retrieval-Augmented Generation, RAG)应运而生,它结合了检索技术和生成模型的优点,旨在提高生成模型的回答质量和准确性。作为一名热衷于自然语言处理(NLP)领域的开发者,我有幸在多个项目中应用了RAG技术,并取得了不错的成效。本文将从我个人的实际经验出发,详细介绍如何使用RAG技术来构建一个问答系统,希望能够帮助那些已经对RAG有一定了解并希望将其应用于实际项目中的开发者们。
34 1
|
15天前
|
人工智能 自然语言处理 机器人
如何从0部署一个大模型RAG应用
本文介绍了如何从零开始部署一套RAG应用,并将其集成到移动端,如钉钉群聊中。应用场景包括客服系统、智能助手、教育辅导和医疗咨询等。通过阿里云PAI和AppFlow,您可以轻松部署大模型RAG应用,并实现智能化的问答服务。具体步骤包括准备向量检索库、训练私有模型、部署RAG对话应用、创建钉钉应用及配置机器人等。
|
16天前
|
存储 机器学习/深度学习 人工智能
文档智能与RAG技术在LLM中的应用评测
本文介绍了阿里云在大型语言模型(LLM)中应用文档智能与检索增强生成(RAG)技术的解决方案,通过文档预处理、知识库构建、高效检索和生成模块,显著提升了LLM的知识获取和推理能力,尤其在法律、医疗等专业领域表现突出。
44 1
|
6月前
|
自然语言处理 物联网 API
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
检索增强生成(RAG)实践:基于LlamaIndex和Qwen1.5搭建智能问答系统
|
13天前
|
机器学习/深度学习 数据采集 人工智能
文档智能和检索增强生成(RAG)——构建LLM知识库
本次体验活动聚焦于文档智能与检索增强生成(RAG)结合构建的LLM知识库,重点测试了文档内容清洗、向量化、问答召回及Prompt提供上下文信息的能力。结果显示,系统在自动化处理、处理效率和准确性方面表现出色,但在特定行业术语识别、自定义向量化选项、复杂问题处理和Prompt模板丰富度等方面仍有提升空间。
49 0
|
6月前
|
弹性计算 自然语言处理 开发工具
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统
本文介绍如何通过整合阿里云Milvus、阿里云DashScope Embedding模型与阿里云PAI(EAS)模型服务,构建一个由LLM(大型语言模型)驱动的问题解答应用,并着重演示了如何搭建基于这些技术的RAG对话系统。
通过阿里云 Milvus 和 LangChain 快速构建 LLM 问答系统