lintsampler:高效从任意概率分布生成随机样本的新方法

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 在实际应用中,从复杂概率密度函数(PDF)中抽取随机样本的需求非常普遍,涉及统计估计、蒙特卡洛模拟和物理仿真等领域。`lintsampler` 是一个纯 Python 库,旨在高效地从任意概率分布中生成随机样本。它通过线性插值采样算法,简化了复杂分布的采样过程,提供了比传统方法如 MCMC 和拒绝采样更简便和高效的解决方案。`lintsampler` 的设计目标是让用户能够轻松生成高质量的样本,而无需复杂的参数调整。

在实际应用中,我们经常需要从给定的概率密度函数(PDF)中抽取随机样本。这种需求在多个领域都很常见,例如:

  1. 估计统计量
  2. 进行蒙特卡洛模拟
  3. 生成粒子系统用于物理仿真

对于标准概率分布,如均匀分布或高斯分布(正态分布),

numpy

scipy

生态系统提供了现成的解决方案。通过

numpy.random

scipy.stats

模块,我们可以方便地生成这些分布的随机样本。

然而,现实世界中的概率分布往往远比标准分布复杂。例如,考虑以下非高斯分布:

图1:非高斯概率密度函数示例。等高线表示等密度线,在对数空间中等间隔分布。

对于这类复杂分布,如何有效地生成随机样本呢?

传统上,有几种广泛使用的方法可以从任意分布中抽样,如拒绝采样法和马尔可夫链蒙特卡洛方法(MCMC)。这些方法都是可靠的技术,并且有一些优秀的Python实现。例如,emcee是一个在科学计算中广泛使用的MCMC采样器。

然而,这些传统方法通常需要复杂的设置和参数调整:

拒绝采样法需要选择合适的提议分布,不当的选择可能导致采样效率极低。

MCMC方法需要关注样本的收敛性,通常需要进行后验分析来评估。

lintsampler

是一个纯Python实现的库,能够高效地从任意概率分布中生成随机样本。本问的作者就是

lintsampler

的开发者之一。

lintsampler

的设计目标就是解决这些问题,提供一种简单高效的采样方法。使用

lintsampler

的基本流程如下:

 fromlintsamplerimportLintSampler
 importnumpyasnp

 x=np.linspace(xmin, xmax, ngrid)
 y=np.linspace(ymin, ymax, ngrid)
 sampler=LintSampler((x, y), pdf)
 pts=sampler.sample(N=100000)

在这个示例中,我们首先定义了两个维度的网格,然后将网格和概率密度函数

pdf

传递给

LintSampler

对象。最后,我们使用

sample

方法生成了100000个样本点。需要注意的是,这里的

pdf

函数并未给出具体定义,完整的示例可以在lintsampler文档中找到。

生成的样本点

pts

可以用散点图可视化:

图2:从复杂PDF中抽样得到的点的散点图。背景等高线表示原始PDF。

这个例子展示了

lintsampler

使用的简便性。在某些情况下,它比MCMC或拒绝采样方法更快、更高效。

lintsampler的技术实现

如果你对

lintsampler

的内部工作机制感兴趣,本节将详细介绍其核心算法。如果你只关注使用方法,可以直接参考官方文档,其中包含了安装指南、使用说明以及多个维度(1D、2D、3D)的示例。文档还介绍了

lintsampler

的一些高级功能,如准蒙特卡罗采样(又称低差异序列)和自适应树结构采样。

线性插值采样算法

lintsampler

的核心是一种称为线性插值采样的算法,本节将概述其基本原理。

以下示例说明了当您将概率密度函数(PDF)和网格传递给

LintSampler

类时,

lintsampler

内部的处理流程。我们以二维高斯分布为例,但这种方法适用于任意维度和更复杂的PDF。

  1. 网格评估:首先,在给定的网格上评估PDF。下图展示了一个使用不均匀网格的例子:图3:左:2D高斯PDF。右:在不均匀网格上评估的PDF。(图片来源:作者)![]

  2. 网格单元概率计算:利用梯形法则估计每个网格单元的总概率。计算方法为单元体积乘以其四个角点密度的平均值。

  3. 线性插值近似:在每个网格单元内,使用双线性插值近似PDF:图4:使用双线性插值填充的网格化PDF。![]![]
  1. 高效采样:基于线性近似的PDF可以高效地进行采样。单个样本的生成是一个两步过程:图5:左:随机选择的网格单元。右:在选定单元内采样的点。a. 首先,根据各单元的概率权重随机选择一个网格单元(如左图所示)。b. 然后,使用逆变换采样法在选定的单元内生成一个样本点(如右图所示)。

核心技术要点

线性近似是该算法的关键步骤。通过将每个网格单元内的PDF近似为线性函数,我们可以得到其分位数函数(即逆累积分布函数)的封闭解析形式。这使得逆变换采样可以简化为生成均匀分布的随机数并应用一个代数函数。

实际应用中,用户需要关注的主要参数是网格分辨率,以确保线性近似的精度足够高。适当的分辨率取决于具体的使用场景,

lintsampler

文档中的示例笔记本展示了不同情况下的最佳实践。

总结

lintsampler为从复杂概率分布中生成随机样本提供了一种简单、高效的解决方案。它结合了易用性和高性能,适用于广泛的科学计算和数据分析任务。对于需要处理非标准概率分布的研究人员和开发者来说,lintsampler是一个值得考虑的强大工具。

lintsampler主页和文档地址

https://avoid.overfit.cn/post/9731901f70c8460884e46d2f4df4caad

作者:Aneesh Naik

目录
相关文章
|
测试技术 C语言 Perl
内存优化-使用tcmalloc分析解决内存泄漏和内存暴涨问题
其实我一直很想写关于tcmalloc的内存泄漏检测的文章,只是一直记不起来该如何下笔,有时项目太忙,在整理这方便的思考过少,另外遇到的问题也不是很多,直到最近用tcmalloc帮A项目排查...
|
缓存 JavaScript 应用服务中间件
Nginx+Tomcat代理环境下JS无法完全加载问题
Nginx+Tomcat代理环境下JS无法完全加载问题
291 0
|
11月前
|
自然语言处理 负载均衡 API
gRPC 一种现代、开源、高性能的远程过程调用 (RPC) 可以在任何地方运行的框架
gRPC 是一种现代开源高性能远程过程调用(RPC)框架,支持多种编程语言,可在任何环境中运行。它通过高效的连接方式,支持负载平衡、跟踪、健康检查和身份验证,适用于微服务架构、移动设备和浏览器客户端连接后端服务等场景。gRPC 使用 Protocol Buffers 作为接口定义语言,支持四种服务方法:一元 RPC、服务器流式处理、客户端流式处理和双向流式处理。
ly~
|
供应链 监控 搜索推荐
大数据的应用场景
大数据在众多行业中的应用场景广泛,涵盖金融、零售、医疗保健、交通物流、制造、能源、政府公共服务及教育等领域。在金融行业,大数据用于风险评估、精准营销、反欺诈以及决策支持;零售业则应用于商品推荐、供应链管理和门店运营优化等;医疗保健领域利用大数据进行疾病预测、辅助诊断和医疗质量评估;交通物流业通过大数据优化物流配送、交通管理和运输安全;制造业则在生产过程优化、设备维护和供应链协同方面受益;能源行业运用大数据提升智能电网管理和能源勘探效率;政府和公共服务部门借助大数据改善城市管理、政务服务及公共安全;教育行业通过大数据实现个性化学习和资源优化配置;体育娱乐业则利用大数据提升赛事分析和娱乐制作水平。
ly~
2467 2
|
12月前
|
设计模式 前端开发 JavaScript
前端编程的异步解决方案有哪些?
本文首发于微信公众号“前端徐徐”,介绍了异步编程的背景和几种常见方案,包括回调、事件监听、发布订阅、Promise、Generator、async/await和响应式编程。每种方案都有详细的例子和优缺点分析,帮助开发者根据具体需求选择最合适的异步编程方式。
272 1
|
12月前
|
数据采集 搜索推荐
推荐系统实践之新闻推荐baseline理解
推荐系统实践之新闻推荐baseline理解
265 1
|
12月前
|
消息中间件 JSON 大数据
大数据-66 Kafka 高级特性 分区Partition 副本因子Replication Factor replicas动态修改 线上动态修改副本数
大数据-66 Kafka 高级特性 分区Partition 副本因子Replication Factor replicas动态修改 线上动态修改副本数
304 1
|
12月前
|
人工智能 小程序 JavaScript
【一步步开发AI运动小程序】一、准备工作
随着AI技术的发展,阿里体育推出的“乐动力”、“天天跳绳”等APP,使云上运动会、线上健身等概念备受关注。本文将指导您使用“云智AI运动识别小程序插件”,从零开始开发AI运动小程序,分享这一潮流红利。需提前准备插件申请、掌握相关开发技术并安装好开发工具。
|
12月前
|
算法 安全 测试技术
C#——刘铁猛笔记
C#——刘铁猛笔记
293 0
|
存储 Linux Go
Docker Volume - 目录挂载以及文件共享
Docker Volume - 目录挂载以及文件共享
342 0