暂时未有相关云产品技术能力~
暂无个人介绍
一文全览 | 自动驾驶Cornor-Case检测数据集(二)
一文全览 | 自动驾驶Cornor-Case检测数据集(一)
EdgeYOLO来袭 | Xaiver超实时,精度和速度完美超越YOLOX、v4、v5、v6(二)
EdgeYOLO来袭 | Xaiver超实时,精度和速度完美超越YOLOX、v4、v5、v6(一)
YOLO系列的落地 | YOLOv7+注意力机制在农业上的应用(二)
YOLO系列的落地 | YOLOv7+注意力机制在农业上的应用(一)
全新轻量化模型 | 轻量化沙漏网络助力视觉感知涨点
部署实战 | 手把手教你在Windows下用TensorRT部署YOLOv8(二)
部署实战 | 手把手教你在Windows下用TensorRT部署YOLOv8(一)
FastPillars实时3D目标检测 | 完美融合PointPillar、YOLO以及RepVGG的思想(二)
FastPillars实时3D目标检测 | 完美融合PointPillar、YOLO以及RepVGG的思想(一)
3D检测涨点Trick | 2D检测居然可以教BEV进行3D目标检测
涨点Trick | 超越CWD、FGD和MGD,AMD蒸馏让目标检测对小目标更有效(二)
涨点Trick | 超越CWD、FGD和MGD,AMD蒸馏让目标检测对小目标更有效(一)
YOLOv6设计来源 | 具有硬件感知的神经网络设计
暴力改进SSD | 小目标检测的福音
模型加速|CNN与ViT模型都适用的结构化剪枝方法(二)
模型加速|CNN与ViT模型都适用的结构化剪枝方法(一)
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!(二)
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!(一)
YOLO系列改进 | YOLOF的小小改进升级之轻量化TE-YOLOF
目标检测提升技巧 | 结构化蒸馏一行代码让目标检测轻松无痛涨点
YOLOv8来啦 | 详细解读YOLOv8的改进模块!YOLOv5官方出品YOLOv8,必卷!
目标检测模型设计准则 | YOLOv7参考的ELAN模型解读,YOLO系列模型思想的设计源头(二)
目标检测模型设计准则 | YOLOv7参考的ELAN模型解读,YOLO系列模型思想的设计源头(一)
目标检测Trick | SEA方法轻松抹平One-Stage与Two-Stage目标检测之间的差距(二)
量化部署必卷 | EasyQuant量化通过Scale优化轻松超越TensorRT量化(二)
量化部署必卷 | EasyQuant量化通过Scale优化轻松超越TensorRT量化(一)
FasterX实时目标检测 | 依托NanoDet思想,使用辅助Head进一步提升YOLOX性能(二)
FasterX实时目标检测 | 依托NanoDet思想,使用辅助Head进一步提升YOLOX性能(一)
3D检测无痛涨点 | 上下文感知数据增强方法上下文感知数据增强方法CA-Aug助力3D!
3D检测经典 | 第一个Anchor-Free、第一个NMS-Free 3D目标检测算法!!!(二)
3D检测经典 | 第一个Anchor-Free、第一个NMS-Free 3D目标检测算法!!!(一)
超实时语义分割 | DWR-Seg超越STDC-1/2、BiSeNet v1/v2,1080ti单卡320+FPS(二)
超实时语义分割 | DWR-Seg超越STDC-1/2、BiSeNet v1/v2,1080ti单卡320+FPS(一)
Efficient-HRNet | EfficientNet思想+HRNet技术会不会更强更快呢?(二)
Efficient-HRNet | EfficientNet思想+HRNet技术会不会更强更快呢?(一)
DETR也需要学习 | DETR-Distill模型蒸馏让DETR系类模型持续发光发热!!!(二)
DETR也需要学习 | DETR-Distill模型蒸馏让DETR系类模型持续发光发热!!!(一)
目标检测系列 | 无NMS的端到端目标检测模型,超越OneNet,FCOS等SOTA!(二)
目标检测系列 | 无NMS的端到端目标检测模型,超越OneNet,FCOS等SOTA!(一)
目标检测落地技能 | 拥挤目标检测你是如何解决的呢?改进Copy-Paste解决拥挤问题!(二)
目标检测落地技能 | 拥挤目标检测你是如何解决的呢?改进Copy-Paste解决拥挤问题!(一)
ViT系列 | 24小时用1张GPU训练一个Vision Transformer可还好?
3D目标检测改进提升 | PointPillar在域自适应的改进DASE-ProPillars(二)
3D目标检测改进提升 | PointPillar在域自适应的改进DASE-ProPillars(一)
Transformer系列 | 又有模型超越SWin?Light Self-Limited-Attention说它可以!
目标检测顶流的碰撞 | YOLOv5+DETR成就地表最强目标检测器DEYO,超越DINO!(二)
目标检测顶流的碰撞 | YOLOv5+DETR成就地表最强目标检测器DEYO,超越DINO!(一)
3D检测界的“YOLO” | 将PointPillars优化16倍,还能很好的控制精度,非常香!!!