YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!(二)

简介: YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!(二)

4、实验


4.1、消融实验

将FMs应用于BBR损失,以研究FMs对附加损失的影响。这些BBR损失的版本2使用了γ = 0.5的设置,以与Focal-EIoU的单调FM对齐。

通过比较BBR损失的版本2和原始版本(表I),可以知道单调的FM对SIoU和EIoU的性能都有负面影响。由于这两种方法对距离度规的惩罚作用更强,因此在单调调频的作用下合成了更大的有害梯度。CIoU和WIoU v1对距离度量的惩罚较小,这使得它们有效地削弱了单调FM对有害梯度的放大。

通过比较BBR损耗的版本3和原始版本(表I),可以知道非单调FM可以有效地提高BBR损失的性能。对于每个BBR损失,都有一组唯一的参数,可以最大化这种性能增益。

此外,还比较了anchor box的回归结果(图5)。具有单调FM的WIoU v2受到低质量样本的影响,导致预测结果较差,WIoU v3受益于动态非单调FM,它有效地屏蔽了低质量样本的影响,并实现了理想的预测。

4.2、消融实验分析

在表一中,BBR损失的原始版本的性能排名为:EIoU > SIoU > CIoU > WIoU v1。这样的命令也符合对距离度量的惩罚的强度。然而,当应用FMs时,BBR损失的性能增益的顺序则相反。在进行的实验中,由WIoU v3训练的模型取得了最好的性能。

在训练过程中监测YOLOv7精度的变化(图9)。由于动态非单调调频,提出的WIoU v3在训练过程中有效地屏蔽了许多负面影响,因此模型的精度可以更快地提高。

image.png

将WIoU v3与最先进的BBR损失进行了比较,并获得了精度差异较大的几个类别(表II)。受益于识别低质量样本的能力,WIoU v3训练的模型大大提高了某些类别的精度。同时,该模型对飞机和长椅的精度也有所下降。

作者注意到,一些飞机的标签存在争议(图7),而一些被选择的飞机缺乏突出的特征,如机身。这些例子和低质量的样本一样难以学习,而这部分困难的样本被WIoU v3的FM抛弃了。此外,在板凳的标签上有大量的错误,也有大量的板凳没有被标注。这对于能够很好地推广和检测到更多长凳的模型来说是不公平的。

在有限的参数下学习适当的知识是实时探测器成功的关键。WIoU v3通过权衡对低质量样本和高质量样本的学习情况,提高了模型的整体性能。


5、参考


[1].Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism.

相关文章
|
8月前
|
算法 固态存储 计算机视觉
Focaler-IoU开源 | 高于SIoU+关注困难样本,让YOLOv5再涨1.9%,YOLOv8再涨点0.3%
Focaler-IoU开源 | 高于SIoU+关注困难样本,让YOLOv5再涨1.9%,YOLOv8再涨点0.3%
269 0
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
1845 0
|
3月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
520 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
5月前
|
监控 算法 自动驾驶
RetinaNet算法1
8月更文挑战第6天
|
5月前
|
机器学习/深度学习 监控 算法
RetinaNet算法2
8月更文挑战第7天
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 2023 | InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数
YOLOv5改进 | 2023 | InnerIoU、InnerSIoU、InnerWIoU、FocusIoU等损失函数
294 0
|
7月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv5改进 | 损失函数 | EIoU、SIoU、WIoU、DIoU、FocusIoU等多种损失函数
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
|
8月前
|
机器学习/深度学习 Oracle 固态存储
目标检测涨点小Trick | 回顾Proposal-Based目标检测,启发小改NMS即可带来涨点
目标检测涨点小Trick | 回顾Proposal-Based目标检测,启发小改NMS即可带来涨点
188 1
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv8改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
621 1
|
8月前
|
机器学习/深度学习 编解码 自然语言处理
南开提出全新ViT | Focal ViT融会贯通Gabor滤波器,实现ResNet18相同参数,精度超8.6%
南开提出全新ViT | Focal ViT融会贯通Gabor滤波器,实现ResNet18相同参数,精度超8.6%
234 0