AI芯片

首页 标签 AI芯片
# AI芯片 #
关注
1320内容
OpenFold2.0 基于NPU的推理适配与测试
本教程详细介绍了 OpenFold 的环境搭建、代码部署、依赖安装、数据集准备及推理测试全流程。首先通过 Anaconda 创建 Python3.9 环境并配置相关库,接着克隆 OpenFold 代码仓库并安装必要依赖(如 PyTorch、dllogger、hhsuite 等)。随后准备 PDB 数据集与模型参数,调整脚本路径以适配运行环境。最后执行推理脚本完成测试,并针对常见报错提供了解决方案,例如更新 NumPy、SciPy 或调整 GPU 配置等,确保流程顺利运行。
|
12月前
|
【AI系统】超异构计算
本文探讨了计算机架构发展的黄金十年,重点介绍了异构计算和超异构计算的概念及其在AI芯片发展中的应用。文章首先回顾了AI芯片发展的三个阶段,随后详细阐述了异构计算的优势和应用场景,如性能飞跃、灵活定制、降低成本和降低功耗。接着,文章分析了超异构计算的出现背景、基本特征及其面临的挑战,包括软件层的复杂性和硬件定义软件与软件定义硬件之间的权衡。最后,展望了超异构计算的未来,强调了跨平台统一计算架构的重要性,以及构建开放生态系统的必要性。
阿里云GPU服务器V100 GPU计算卡价格表
阿里云GPU服务器V100 GPU计算卡价格表,阿里云GPU服务器租用价格表包括包年包月价格、一个小时收费以及学生GPU服务器租用费用,阿里云GPU计算卡包括NVIDIA V100计算卡、T4计算卡、A10计算卡和A100计算卡,GPU云服务器gn6i可享受3折优惠,阿里云百科分享阿里云GPU服务器租用价格表、GPU一个小时多少钱以及学生GPU服务器收费价格表
华为AI芯片+微软研发=第一款移动端离线推理神经网络
10 月下旬,华为的 NPU AI 专用处理单元和 HiAI 移动计算平台亮相华为上海发布会,引起了诸多关注。在发布会上,余承东通过微软为华为开发的 Microsoft Translator 的 AI 离线翻译功能介绍了人工智能专用芯片 NPU 与 HiAI 移动计算平台。随后,我们与微软全球技术院士黄学东进行了对话,仔细聊了聊这款包含了世界上第一个能够在智能设备上进行离线推理的自然语言处理神经网络的应用的诞生始末。
多GPU训练大型模型:资源分配与优化技巧 | 英伟达将推出面向中国的改良芯片HGX H20、L20 PCIe、L2 PCIe
在人工智能领域,大型模型因其强大的预测能力和泛化性能而备受瞩目。然而,随着模型规模的不断扩大,计算资源和训练时间成为制约其发展的重大挑战。特别是在英伟达禁令之后,中国AI计算行业面临前所未有的困境。为了解决这个问题,英伟达将针对中国市场推出新的AI芯片,以应对美国出口限制。本文将探讨如何在多个GPU上训练大型模型,并分析英伟达禁令对中国AI计算行业的影响。
新手入门:DGL在昇腾上的安装问题
本文介绍了在aarch64架构和Python 3.10环境下安装DGL(Deep Graph Library)的过程。首先通过`uname -a`确认硬件架构,接着使用`python --version`检查Python版本。为确保兼容性,从指定链接下载适合的whl包或通过pip安装dgl。过程中遇到了torchdata版本不兼容的问题,通过降级torchdata至0.7.1版本解决。此外,针对NPU芯片适配,重新安装了与CANN 8.0.RC2兼容的torch和torch_npu组件。最终成功导入dgl包并准备进行模型训练验证。
NPU上如何使能pytorch图模式
本文介绍了PyTorch的`torch.compile`技术和TorchAir的相关内容。`torch.compile`通过将动态图转换为静态图并结合JIT编译,提升模型推理和训练效率。示例代码展示了如何使用`torch.compile`优化模型。TorchAir是昇腾为PyTorch提供的图模式扩展库,支持在昇腾设备上进行高效训练和推理。它基于Dynamo特性,将计算图转换为Ascend IR,并通过图引擎优化执行。文章还提供了TorchAir的使用示例及功能配置方法。
什么才是“真AI相机”
从去年开始,AI(人工智能)概念在手机行业大行其道,并且与消费者最关注的拍照功能结合起来。一时间,各大手机厂商不约而同地发布了多款号称搭载了“AI相机”的智能手机,造成了手机市场鱼龙混杂的局面。
免费试用