时序数据库

首页 标签 时序数据库
# 时序数据库 #
关注
1128内容
Influx Sql系列教程三:measurement 表
在influxdb中measurement相当于mysql中的表,可以理解为一条一条记录都是存与measurent中的,一个数据库中可以有多个measurement,一个measurement中可以存很多的数据。虽然可将measurement类比为mysql中的表,但是他们之间的差别也挺明显的 首先我们先了解一下measurement的几个常用命令,如何查看、新增删除
InfluxDB Cluster - InfluxDB Enterprise 集群的开源替代方案
InfluxDB Cluster - 一个开源分布式时间序列数据库,InfluxDB Enterprise 集群的开源替代方案。完全依照 InfluxDB Enterprise 实现,基于 InfluxDB v1.8.10 开发,支持集群(数据分片)、高可用(容错)、数据一致性(Raft,Hinted Handoff)、配套工具(扩缩容、数据同步等)等特性,Telegraf、Chronograf、Kapacitor 也完全支持,生产环境已就绪
InfluxDB 的优缺点,哪些应用场景
InfluxDB是一种专门用于处理和存储时间序列数据的开源数据库。以下是InfluxDB的一些优点和缺点,以及适用的应用场景: 优点: 1. 高性能:InfluxDB在设计上针对时间序列数据进行了优化,具有高写入和高查询性能,可以处理大规模的数据量。 2. 简单易用:InfluxDB具有简单的数据模型和查询语言,易于上手和使用。其查询语言InfluxQL和新版本的Flux具有强大的查询和聚合功能。 3. 数据压缩:InfluxDB通过使用时间序列数据的特性进行数据压缩,可以有效地减小数据存储的大小。 4. 可扩展性:InfluxDB支持水平扩展,可以通过添加更多的节点来增加存储和查询能力。
InfluxDB数据模型与数据结构设计详解
【4月更文挑战第30天】InfluxDB是一款高性能时序数据库,其数据模型由数据库、测量值、标签和字段组成。数据库存储相关数据,测量值类似表格,包含标签和字段。标签是元数据,用于分类和查询优化;字段存储实际数据值。设计时应注意明确测量值、合理定义标签、精简字段,利用标签索引优化查询,以及考虑数据生命周期和保留策略。理解这些概念有助于高效使用InfluxDB处理时序数据。
InfluxDB与Telegraf:数据采集与监控实战
【4月更文挑战第30天】本文介绍了InfluxDB和Telegraf在数据采集与监控中的应用。InfluxDB是高性能的时序数据库,适合高吞吐量和实时查询,而Telegraf是数据采集代理,能收集多种系统指标并发送至InfluxDB。实战部分涉及安装配置两者,通过Telegraf收集数据,然后使用InfluxDB查询分析,配合Grafana实现可视化展示,从而实现有效的监控解决方案。
Apache IoTDB进行IoT相关开发实践
IoTDB是专为物联网(IoT)设计的开源时间序列数据库,提供数据收集、存储、管理和分析。它支持高效的数据写入、查询,适用于处理大规模物联网数据,包括流数据、时间序列等。IoTDB采用轻量级架构,可与Hadoop和Spark集成,支持多种存储策略,确保数据安全和高可用性。此外,它还具有InfluxDB协议适配器,允许无缝迁移和兼容InfluxDB的API和查询语法,简化物联网项目的数据管理。随着物联网设备数量的快速增长,选择适合的数据库如IoTDB对于数据管理和分析至关重要。
|
11月前
|
时序数据库 TDengine 支持集成开源的物联网平台 ThingsBoard
本文介绍了如何结合 Thingsboard 和 TDengine 实现设备管理和数据存储。Thingsboard 中的“设备配置”与 TDengine 中的超级表相对应,每个设备对应一个子表。通过创建设备配置和设备,实现数据的自动存储和管理。具体操作包括创建设备配置、添加设备、写入数据,并展示了车辆实时定位追踪和车队维护预警两个应用场景。
免费试用